Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/SFSA-AY8RRF
Type: Tese de Doutorado
Title: Estudos ab initio de alta precisão aplicados à pequenas moléculas
Authors: Cayo Emílio Monteiro Gonçalves
First Advisor: Joao Pedro Braga
First Co-advisor: Breno Rodrigues Lamaghere Galvão
First Referee: Antônio Canal Neto
Second Referee: Nelson Henrique Teixeira Lemes
Third Referee: Bernardo Lages Rodrigues
metadata.dc.contributor.referee4: Rita de Cassia de Oliveira Sebastiao
Abstract:  Este trabalho teve como objetivo calcular propriedades moleculares de pequenos sistemas utilizando para este fim apenas primeiros princípios (ab initio) em seu estado-da-arte. Foram estudados dois sistemas compostos por três átomos: Si3, que há décadas tem chamado o interesse da comunidade científica após ter sido detectado em espectros de estrelas e posteriormente na aplicação na área de semicondutores; e o sistema CNO, cujos componentes desempenham um papel fundamental e ainda em estudo na química da atmosfera terrestre. O trímero de silício exibe uma complexa configuração de estados eletrônicos, e neste trabalho vários deles foram caracterizados. Uma atenção especial foi dada aos dois de mais baixa energia (X1A1) e (3B2) e o acoplamento spin-órbita entre eles foi calculado. Existia na literatura uma incerteza com relação a qual dos dois estados era de fato o mais baixo e neste trabalho ficou claro que se trata do (X1A1). Dados de geometrias, frequências vibracionais e energias relativas também são atualizados para um nível de cálculo atual como o Muti- Reference Configuration Interaction incluindo a correção para o limite da base completa. Já para o CNO foi construída uma superfície de energia potencial global para o estado (X2A'), cujas energias foram obtidas por cálculos Explicitly-Correlated Multi-Reference Configuration Interaction e ajustadas para a forma funcional do método Double Many-Body Expansion. Diversas geometrias importantes e suas frequências de vibração são caracterizadas. A superfície é idealizada para cálculos da dinâmica e cinética reacional do sistema.
Abstract: The objective of this work was to calculate molecular properties of small systems using to that end only first principles (ab initio) in its state-of-the-art. Two systems were studied: Si3, which in decades has receiving attention from the scientific community after it wasdetected in stars spectra and later in the application on the semiconductors area; and the CNO system, whose components plays a major role in the atmospheric chemistry. The silicon trimer has a complex electronic states configuration, and in this work several were characterized. A special attention was given to the two lowest states (X1A1) and (3B2) and their spin-orbit coupling was calculated. There was some doubts in the literature about which was the true ground state and in this work it become clear that the it is the (X1A1). Data regarding geometries, vibrational frequencies and relative energies are also updated to a more recent level as the Muti-Reference Configuration Interaction, including the correction to the Complete Basis Set Limit.A global potential energy surface was constructed to the CNO ground state (X2A), whose energies were obtained from Explicitly-Correlated Multi-Reference Configuration Interaction calculation and fitted to the functional form of the Double Many-Body Expansion method. Several important saddle points and their frequencies were characterized. Thesurface is developed to calculations of reactive dynamics and kinetics.
Subject: Moleculas Simulação por computador
Silicio
Schrodinger, Equação de
Físico química
Superfícies de energia Potencial
language: Português
Publisher: Universidade Federal de Minas Gerais
Publisher Initials: UFMG
Rights: Acesso Aberto
URI: http://hdl.handle.net/1843/SFSA-AY8RRF
Issue Date: 26-Feb-2018
Appears in Collections:Teses de Doutorado

Files in This Item:
File Description SizeFormat 
cayo_emilio_monteiro_gon_alves_tese.pdf1.88 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.