Uma nova estratégia para manipulações e cálculos envolvendo divergências em TQC
Carregando...
Arquivos
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Tese de doutorado
Título alternativo
Primeiro orientador
Membros da banca
Michael Louis O Carroll
Ricardo Schwartz Schor
José Abdalla Helayël-Neto
Olivier Piguet
Ricardo Schwartz Schor
José Abdalla Helayël-Neto
Olivier Piguet
Resumo
O formalismo matemático construído dentro da teoria quântica de campos (TQC), conhecido como Expansão Perturbativa Diagramática [1], é aceito atualmente como a mais adequada ferramenta teórica para o estudo das partículas elementares e suas interações. Essa crença é, em grande parte, devida ao incrível sucesso da Eletrodinâmica Quântica (QED) na descrição de observáveis físicos [2], a qual produz os melhores números da história da ciência até os dias de hoje. A maneira como estas conclusões foram construídas está longe de ser óbvia. A QED somente foi aceita como uma teoria após uma apropriada interpretação ter sido dada `as divergências que aparecem no cálculo perturbativo [3]. Uma TQC pode ser vista, dentro do contexto acima, como sendo representada por uma lagrangiana, a qual incorpora o conjunto básico de hipóteses nas simetrias implementadas em sua construção, ou pelas correspondentes regras de Feynman associadas. Esperamos, da aplicação deste esquema, pelo menos a produção de amplitudes que sejam compatíveis com princípios gerais, tais como unitariedade e simetrias fundamentais da teoria, ordem a ordem na expansão perturbativa. A implementação destas exigências é frequentemente obtida pela imposição de relações entre funções de Green da teoria, as Identidades de Ward [4].
Abstract
Assunto
Teoria quântica de campos, Cálculo integral, Divergências em Teoria Quântica de Campos
Palavras-chave
Espalhamento, Férmions de Spin, Eletrodinâmica Quântica