Asymmetric Transfer Hydrogenation of Aryl Heteroaryl Ketones and o-Hydroxyphenyl Ketones Using Noyori-Ikariya Catalysts
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Artigo de periódico
Título alternativo
Primeiro orientador
Membros da banca
Resumo
In 1995, Noyori and co-workers made a breakthrough with their design of practical ruthenium-based catalysts, which combined the homochiral TsDPEN ligand with a Ru(II) arene [1,2]. Using (R,R)-1 at a loading of 0.5 mol% in either KOH-iPrOH or the azeotropic mixture of formic acid–triethylamine (FA:TEA, 5:2 molar ratio), the reduction of acetophenone was achieved in up to 98% ee (Figure 1).The mechanism for the asymmetric transfer hydrogenation (ATH) with Noyori–Ikariya catalysts is now well-established (Figure 2) [3,4,5,6,7,8,9]. The precatalyst can be activated by elimination of HCl to form a 16-electron neutral Ru(II) complex. Then, the 16-electron complex abstracts two hydrogen atoms from the hydrogen donor, such as isopropanol, a formic acid/triethylamine (FA/TEA) mixture or sodium formate, to form a hydride that contains an 18-electron Ru(II) centre. Finally, the two hydrogen atoms are transferred to the C=O group and reduce ketone substrates into chiral alcohol products. Meanwhile, the 16-electron neutral Ru(II) complex is regenerated and can restart the catalytic cycle. The six-membered transition state can be stabilized by the combination of electrostatic interactions and steric effects. Edge/face (or CH/π) electrostatic interaction makes the electron-rich aryl group of a substrate favour the position adjacent to the η6-arene ring of the catalyst (Figure 3), whereas the large group and electron group favour the position distal to η6-arene ring (Figure 4).
Abstract
Assunto
Química, Catálise, Redução (Química), Hidrogenação
Palavras-chave
Catalysis, Noyori catalyst, Reduction, Enatioselective reduction
Citação
Curso
Endereço externo
http://https://doi.org/10.3390/ecsoc-25-11774