CALI: a novel model for visual mining of biological relevant patterns in protein-ligand graphs

dc.creatorSusana Medina Gordillo
dc.date.accessioned2023-01-19T14:34:16Z
dc.date.accessioned2025-09-09T00:00:48Z
dc.date.available2023-01-19T14:34:16Z
dc.date.issued2016-10-27
dc.description.abstractProtein-ligand interaction (PLI) networks show how proteins interact with small nonprotein ligands and can be used to study molecular recognition, which plays an important role in biological systems. The binding and interaction of molecules depend on a combination of conformational and physicochemical complementarity. There are several methods to predict protein-ligand interactions, but a few are designed to identify and describe implications of intelligible factors in protein-ligand recognition. We propose CALI (Complex network-based Analysis of protein-Ligand Interactions), a strategy based on complex network modeling of protein-ligand interactions, revealing frequent and relevant patterns among them. We compared patterns obtained with CALI to those computed using Frequent Subgraph Mining (FSM) paradigm. FSM needs to run several times for a variety of support values and it also needs a mapping step, in which computed patterns are mapped to the graph input dataset through a subgraph isomorphism algorithm. On the other hand, CALI is executed once and without applying the mapping step to the input dataset. Additionally, patterns obtained with CALI were compared to experimentally determined protein-ligand interactions from previous studies involving two datasets: one composed by the well studied CDK2 enzymes and, the other, by the Ricin toxin. For CDK2 dataset, CALI found 90% of such residues and, for Ricin dataset, CALI found all residues that interact with ligands. CALI was able to predict residues experimentally determined as relevant in protein-ligand interactions for two diverse datasets. This new model requires neither running FSM nor analyzing its wide number of output patterns to find the most common protein-ligand interactions. Instead, we propose using network topological properties coupled with a powerful visual and interactive representation of data to analyze interactions. Furthermore, our strategy provides a general view of the input interaction dataset, showing the most common PLIs from a global perspective.
dc.identifier.urihttps://hdl.handle.net/1843/48999
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/
dc.subjectComputação - Teses
dc.subjectBioinformática - Teses
dc.subjectInteração Proteína-ligante - Teses
dc.subjectTeoria de redes complexas - Teses
dc.subjectMineração de grafos - Teses
dc.subjectVisualização de dados - Teses
dc.subject.otherProtein-ligand interaction
dc.subject.otherComplex networks
dc.subject.otherFrequent pattern mining
dc.subject.otherVisualization
dc.subject.otherGraph-mining
dc.titleCALI: a novel model for visual mining of biological relevant patterns in protein-ligand graphs
dc.typeDissertação de mestrado
local.contributor.advisor-co1Sabrina de Azevedo Silveira
local.contributor.advisor1Raquel Cardoso de Melo Minardi
local.contributor.advisor1Latteshttp://lattes.cnpq.br/9274887847308980
local.contributor.referee1Aristóteles Goes Neto
local.contributor.referee1Wagner Meira Junior
local.creator.Latteshttp://lattes.cnpq.br/8037281543461583
local.description.resumoProtein-ligand interaction (PLI) networks show how proteins interact with small nonprotein ligands and can be used to study molecular recognition, which plays an important role in biological systems. The binding and interaction of molecules depend on a combination of conformational and physicochemical complementarity. There are several methods to predict protein-ligand interactions, but a few are designed to identify and describe implications of intelligible factors in protein-ligand recognition. We propose CALI (Complex network-based Analysis of protein-Ligand Interactions), a strategy based on complex network modeling of protein-ligand interactions, revealing frequent and relevant patterns among them. We compared patterns obtained with CALI to those computed using Frequent Subgraph Mining (FSM) paradigm. FSM needs to run several times for a variety of support values and it also needs a mapping step, in which computed patterns are mapped to the graph input dataset through a subgraph isomorphism algorithm. On the other hand, CALI is executed once and without applying the mapping step to the input dataset. Additionally, patterns obtained with CALI were compared to experimentally determined protein-ligand interactions from previous studies involving two datasets: one composed by the well studied CDK2 enzymes and, the other, by the Ricin toxin. For CDK2 dataset, CALI found 90% of such residues and, for Ricin dataset, CALI found all residues that interact with ligands. CALI was able to predict residues experimentally determined as relevant in protein-ligand interactions for two diverse datasets. This new model requires neither running FSM nor analyzing its wide number of output patterns to find the most common protein-ligand interactions. Instead, we propose using network topological properties coupled with a powerful visual and interactive representation of data to analyze interactions. Furthermore, our strategy provides a general view of the input interaction dataset, showing the most common PLIs from a global perspective.
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Ciência da Computação

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
SusanaMedinaGordillo.pdf
Tamanho:
14.43 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: