Modelo de regressão de Cox com verossimilhança monótona

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Vinicius Diniz Mayrink
Wagner Barreto de Souza

Resumo

Quando se modela estudos clínicos ou epidemiológicos envolvendo eventos raros é comum obter amostras com alto percentual de censura. A presença de covariáveis binárias nas análises pode criar problemas durante o processo de estimação fazendo com que a função de verossimilhança não seja maximizada para determinados parâmetros. Este fenômeno é conhecido na literatura por verossimilhança monótona, e ocorre quando um dos níveis da covariável binária não está associado ao evento de interesse. Uma solução para o problema baseada na inferência Clássica, foi sugerida por Heinze e Schemper (2001), sendo uma adaptação do procedimento de Firth (1993), originalmente desenvolvido para reduzir o viés dos estimadores de máxima verossimilhança. Este procedimento garante a obtenção de estimativas finitas para os parâmetros. No entanto, a solução tem a desvantagem de fornecer estimativas viesadas associadas a erros-padrão elevados. Neste trabalho, propomos corrigir o problema usando a abordagem Bayesiana, onde diferentes funções de penalidade (distribuições a priori) para os parâmetros foram testadas, como por exemplo a N(m, v), Cauchy(l, s) e log-F(a, b). Um estudo de simulação foi desenvolvido para avaliar o comportamento assintótico das estimativas. Finalmente, realiza-se uma aplicação destes procedimentos a um banco de dados real referente a pacientes com melanoma.

Abstract

Assunto

Análise de regressão, Regressão de Cox, Estatística, Estatistica, Verossimilhança (Estatistica), Teoria bayesiana de decisão estatistica, Verossimilhança (Estatística)

Palavras-chave

Análise de Sobrevivência, Verossimilhança Monótona, Correção de Firth, Melanoma, Abordagem Bayesiana

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por