Desigualdades que garantem a convergência do método de Newton-Raphson para os zeros do polinômio ultraesférico no caso principal
Carregando...
Arquivos
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Dissertação de mestrado
Título alternativo
Primeiro orientador
Membros da banca
Denise Burgarelli Duczmal
Rodney Josue Biezuner
Dimitar Kolev Dimitrov
Rodney Josue Biezuner
Dimitar Kolev Dimitrov
Resumo
Os n pontos da quadratura de Gauss-Gegenbauer são os zeros do polinômio ultraesférico de grau n. O tradicional e mais amplamente utilizado método do autossistema consiste em calcular os pontos como sendo os autovalores de uma matriz simétrica tridiagonal cujosautovetores podem ser utilizados para o cálculo dos respectivos pesos. Alternativamente o método de Newton-Raphson pode fornecer tais pontos e pesos utilizando algumas propriedades dos polinômios ultraesféricos. Neste trabalho demonstramos que, se forem utilizadasdeterminadas aproximações iniciais, o método de Newton-Raphson será, de fato, convergente para os zeros dos polinômios ultraesféricos no caso 0 << 1. Consequentemente obtemos algumas desigualdades para os zeros dos polinômios ultraesféricos. Além disto, comparamosa exatidão e o tempo de execução de ambos os métodos: autossistema e Newton-Raphson.
Abstract
The n points of Gauss-Gegenbauer quadrature are the zeros of the ultraspherical polynomial of degree n. The traditional and most-widely used eigensystem method computes the points as the eigenvalues of a symmetric tridiagonal matrix whose eigenvectors can be used to compute the corresponding weights. Alternatively the Newton-Raphson method can provide such points and weights using some properties of ultraspherical polynomials. In this work we show that if certain initial guesses are used, the Newton-Raphson method is in fact convergent for zeros of ultraspherical polynomials in the case 0 << 1. As a result weobtain some inequalities for zeros of ultraspherical polynomials. In addition, we compare the accuracy and computation time of both methods: eigensystem and Newton-Raphson.
Assunto
Matemática, Desigualdades (Matemática), Newton-Raphson, método
Palavras-chave
Autossistema, Gauss-Gegenbauer, Desigualdades para zeros de polinômios ultraesféricos, Newton-Raphson