Canine mammary cancer diagnosis from quantitative properties of nonlinear optical images
| dc.creator | Luana Aparecida dos Reis | |
| dc.creator | Ana Paula Vargas Garcia | |
| dc.creator | Egleidson Frederik do Amaral Gomes | |
| dc.creator | Francis G. J. Longford | |
| dc.creator | Jeremy Graham Frey | |
| dc.creator | Geovanni Dantas Cassali | |
| dc.creator | Ana Maria de Paula | |
| dc.date.accessioned | 2023-03-03T18:58:20Z | |
| dc.date.accessioned | 2025-09-08T22:59:59Z | |
| dc.date.available | 2023-03-03T18:58:20Z | |
| dc.date.issued | 2020 | |
| dc.description.sponsorship | CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico | |
| dc.description.sponsorship | FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais | |
| dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | |
| dc.description.sponsorship | INCT – Instituto nacional de ciência e tecnologia (Antigo Instituto do Milênio) | |
| dc.format.mimetype | ||
| dc.identifier.doi | https://doi.org/10.1364/BOE.400871 | |
| dc.identifier.issn | 2156-7085 | |
| dc.identifier.uri | https://hdl.handle.net/1843/50652 | |
| dc.language | eng | |
| dc.publisher | Universidade Federal de Minas Gerais | |
| dc.rights | Acesso Aberto | |
| dc.subject | Microscopia | |
| dc.subject | Câncer | |
| dc.subject | Óptica não-linear | |
| dc.subject.other | Microscopy | |
| dc.subject.other | Multiphoton | |
| dc.subject.other | Cancer | |
| dc.subject.other | SHG | |
| dc.subject.other | Nonlinear optics | |
| dc.title | Canine mammary cancer diagnosis from quantitative properties of nonlinear optical images | |
| dc.type | Artigo de periódico | |
| local.citation.epage | 6427 | |
| local.citation.issue | 11 | |
| local.citation.spage | 6413 | |
| local.citation.volume | 11 | |
| local.description.resumo | We present nonlinear microscopy imaging results and analysis from canine mammary cancer biopsies. Second harmonic generation imaging allows information of the collagen structure in the extracellular matrix that together with the fluorescence of the cell regions of the biopsies form a base for comprehensive image analysis. We demonstrate an automated image analysis method to classify the histological type of canine mammary cancer using a range of parameters extracted from the images. The software developed for image processing and analysis allows for the extraction of the collagen fibre network and the cell regions of the images. Thus, the tissue properties are obtained after the segmentation of the image and the metrics are measured specifically for the collagen and the cell regions. A linear discriminant analysis including all the extracted metrics allowed to clearly separate between the healthy and cancerous tissue with a 91%-accuracy. Also, a 61%-accuracy was achieved for a comparison of healthy and three histological cancer subtypes studied. | |
| local.identifier.orcid | https://orcid.org/0000-0002-0898-6295 | |
| local.identifier.orcid | https://orcid.org/0000-0003-0842-4302 | |
| local.identifier.orcid | https://orcid.org/0000-0002-5650-6743 | |
| local.identifier.orcid | https://orcid.org/0000-0002-8551-5948 | |
| local.publisher.country | Brasil | |
| local.publisher.department | ICX - DEPARTAMENTO DE FÍSICA | |
| local.publisher.initials | UFMG | |
| local.url.externa | https://opg.optica.org/boe/fulltext.cfm?uri=boe-11-11-6413&id=441702 |