Optimization algorithms for the Steiner team orienteering problem

dc.creatorLucas Assunção de Almeida
dc.date.accessioned2020-02-17T19:44:59Z
dc.date.accessioned2025-09-09T00:29:53Z
dc.date.available2020-02-17T19:44:59Z
dc.date.issued2019-10-07
dc.description.abstractO Team Orienteering Problem (TOP) é um problema NP-difícil de roteamento em que uma frota homogênea de veículos tem por objetivo coletar prêmios disponíveis em um determinado número de localidades, enquanto respeitando restrições de tempo de percurso. No TOP, cada localidade pode ser visitada por, no máximo, um veículo, e o objetivo é maximizar o montante de prêmios coletados pelos veículos dentro de um limite de tempo pré-estabelecido. Na nossa pesquisa, propomos uma generalização do TOP, denominada Steiner Team Orienteering Problem (STOP). No STOP, é dado, adicionalmente, um subconjunto de localidades obrigatórias. Assim, o STOP também tem por objetivo maximizar o total de prêmios coletados dentro de um limite de tempo, mas, agora, cada localidade obrigatória deve ser visitada. Como uma primeira contribuição, propomos para o STOP uma nova formulação baseada em produto e a usamos dentro de um esquema de planos de cortes. O algoritmo beneficia-se da compacidade e da força da formulação proposta e funciona separando cinco famílias de desigualdades válidas, a saber: restrições de conectividade, clássicas lifted cover inequalities baseadas em limites duais, uma classe de desigualdades denominadas arc-vertex inference cuts e duas classes de cortes baseados em vértices conflitantes. Até onde sabemos, as últimas três classes de desigualdades são também inéditas na literatura, sendo aqui introduzidas junto às suas respectivas provas de validade. Um algoritmo branch-and-cut que é estado-da-arte na literatura do TOP foi adaptado ao STOP e usado como baseline para avaliar a performance do algoritmo de planos de cortes proposto. Extensivos experimentos computacionais mostram a competitividade do novo algoritmo na resolução de instâncias do STOP e do TOP. Em particular, o algoritmo é capaz de resolver, no total, 14 instâncias do TOP a mais do que qualquer outro algoritmo exato na literatura, além de encontrar nove novos certificados de otimalidade. Com relação às novas instâncias do STOP introduzidas neste trabalho, nosso algoritmo resolve 31 instâncias a mais do que o baseline. Neste trabalho, também provamos que encontrar uma solução viável para o STOP é NP-difícil e propomos uma heurística Large Neighborhood Search (LNS) para o problema. A heurística é inicializada com soluções obtidas pela matheurística conhecida pelo nome de Feasibility Pump, a qual, em nossa implementação, tem por base a formulação compacta que propomos para o STOP. A heurística LNS em si combina buscas locais clássicas da literatura de problemas de roteamento com um componente de memória de longo-prazo baseado em Path Relinking. Experimentos computacionais mostram a eficiência e eficácia da heurística proposta quando resolvendo um conjunto de 387 instâncias do STOP. No geral, as soluções heurísticas obtidas implicam um gap percentual de apenas 0.54% em relação aos melhores limites conhecidos para as instâncias. Em particular, a heurística atinge os melhores limites já sabidos em 382 das 387 instâncias utilizadas. Ademais, em 21 desses casos, nossa heurística é ainda capaz de melhorar esses limites. Por fim, o algoritmo híbrido obtido ao inicializar o algoritmo de planos de cortes com as soluções providas pela heurística LNS é capaz de resolver na otimalidade quatro instâncias do TOP e sete instâncias do STOP a mais do que o algoritmo de planos de cortes sozinho. Além disso, o algoritmo híbrido obtém novos certificados de otimalidade para cinco instâncias do TOP ainda não resolvidas por nenhum outro algoritmo da literatura (incluindo nosso algoritmo de planos de cortes sem a ajuda da heurística).
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.description.sponsorshipFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.identifier.urihttps://hdl.handle.net/1843/32558
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectEngenharia de produção
dc.subjectOtimização combinatória
dc.subject.otherEngenharia de produção
dc.subject.otherOtimização combinatória
dc.titleOptimization algorithms for the Steiner team orienteering problem
dc.title.alternativeAlgoritmos de otimização para o Steiner Team Orienteering Problem
dc.typeTese de doutorado
local.contributor.advisor1Geraldo Robson Mateus
local.contributor.advisor1Latteshttp://lattes.cnpq.br/6289602045034353
local.contributor.referee1Martín Gómez Ravetti
local.contributor.referee1Ricardo Saraiva de Camargo
local.contributor.referee1Marcus Vinicius Soledade Poggi de Aragão
local.contributor.referee1Eduardo Uchoa Barboza
local.creator.Latteshttp://lattes.cnpq.br/3822895066233975
local.description.resumoThe Team Orienteering Problem (TOP) is an NP-hard routing problem in which a fleet of identical vehicles aims at collecting rewards (prizes) available at given locations, while satisfying restrictions on the travel times. In the TOP, each location can be visited by at most one vehicle, and the goal is to maximize the total sum of rewards collected by the vehicles within a given time limit. In our research, we propose a generalization of the TOP, namely the Steiner Team Orienteering Problem (STOP). In the STOP, we provide, additionally, a subset of mandatory locations. In this sense, the STOP also aims at maximizing the total sum of rewards collected within the time limit, but, now, every mandatory location must be visited. As a first contribution, we propose a new commodity-based formulation for the STOP and use it within a cutting-plane scheme. The algorithm benefits from the compactness and strength of the proposed formulation and works by separating five families of valid inequalities, which consist of some general connectivity constraints, classical lifted cover inequalities based on dual bounds, a class of the so-called arc-vertex inference cuts and classes of conflict cuts and clique conflict cuts. To our knowledge, the last three classes of inequalities are also introduced in this work, along with the due proofs of validity. A state-of-the-art branch-and-cut algorithm from the literature of the TOP is adapted to the STOP and used as baseline to evaluate the performance of the cutting-plane. Extensive computational experiments show the competitiveness of the new algorithm while solving several STOP and TOP instances. In particular, it is able to solve, in total, 14 more TOP instances than any other previous exact algorithm and finds nine new optimality certificates. With respect to the new STOP instances introduced in this work, our algorithm solves 31 more instances than the baseline. In this work, we also prove that solely finding a feasible solution for the STOP is NP-hard and propose a Large Neighborhood Search (LNS) heuristic for the problem. The algorithm is provided with initial solutions obtained by means of the matheuristic framework known as Feasibility Pump, which, in our implementation, uses as backbone the commodity-based formulation we propose. The LNS heuristic itself combines classical local searches from the literature of routing problems with a long-term memory component based on Path Relinking. Computational experiments show the efficiency and effectiveness of the proposed heuristic in solving a benchmark of 387 STOP instances. Overall, the heuristic solutions imply an average percentage gap of only 0.54% when compared to the best known bounds. In particular, the heuristic reaches the best previously known bounds on 382 of the 387 instances. Additionally, in 21 of these cases, our heuristic is even able to improve over the best known bounds. At last, the hybrid algorithm obtained from warm starting our cutting-plane algorithm with the LNS heuristic is able to solve to optimality four more TOP instances and seven more STOP instances than the cutting-plane algorithm alone. Additionally, it provides the optimality certificates of five previously unsolved (even by our plain cutting-plane algorithm) TOP instances.
local.publisher.countryBrasil
local.publisher.departmentENG - DEPARTAMENTO DE ENGENHARIA PRODUÇÃO
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Engenharia de Produção

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
ThesisLucasAssuncao.pdf
Tamanho:
1.19 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: