Previsão de demanda de energia elétrica com redes neurais artificiais e análise por série de Fourier
Carregando...
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Dissertação de mestrado
Título alternativo
Primeiro orientador
Membros da banca
Rodney Rezende Saldanha
Frederico Gualberto Ferreira Coelho
Hilton de Oliveira Mota
Frederico Gualberto Ferreira Coelho
Hilton de Oliveira Mota
Resumo
A estrutura atual do mercado de energia elétrica no Brasil é decorrente da quebra do monopólio estatal no setor de energia. Essa estrutura possui regras que separam o setor de energia em segmentos que oferecem o serviço, criando um cenário de competição. A tendência no mercado competitivo de energia elétrica é que as empresas busquemformas de prever a necessidade de seus clientes, melhorando a qualidade do serviço prestado. Para isso, as empresas mapeiam o comportamento do mercado, verificam os pontos críticos e montam estratégias de gerenciamento e intervenção nesses pontos.Considerando que o planejamento da demanda de energia elétrica do Brasil é estratégico, o presente trabalho propõe metodologias de previsão dessa demanda, utilizando indicadores de desempenho sócio-econômicos, indicadores climáticos e históricos de demanda de energia elétrica. Os modelos propostos são baseados em redes neurais artificiais, algoritmos estatísticos, algoritmos de identificação de tendências e análise de variáveis exógenas. A aplicação dos métodos propostos nesse trabalho possibilita a obtenção do comportamentofuturo da demanda do Sistema Interligado Nacional (SIN) com uma média de acerto muito próxima da sua série histórica.
Abstract
The current model of the electricity market in Brazil is due to the breaking up of the state monopoly on the electrical energy sector. This model has regulations that divide the energy sector in sections that offer the service, creating a competitive environment. The trend in the market that competes for electricity is that companies seek ways to provide the customers need. In order to improve the quality of service provided,companies analyze market behavior, check the critical points and elaborate control and intervention strategies in these points.Considering that the electricity demand planning in Brazil is strategic, this work shows some demand forecasting methodologies using socio-economic performance indicators, weather indicators and electricity demand history. The proposed models are based on artificial neural networks, statistical algorithms, trend identification and analysisof exogenous variables. The application of the forecasting methods, demonstrated in this work, enables the achievement of a future behavior of the National Interconnected Systems electrical demand with an average close to its historical serie.
Assunto
Engenharia elétrica, Redes neurais (Computação), Fourier, Séries de
Palavras-chave
Modelo de previsão, Redes neurais, Demanda de energia, Série de Fourier