Ciência de dados e aprendizado de máquina para predição em séries temporais financeiras

dc.creatorCaio Mário Henriques Silva da Rocha Mesquita
dc.date.accessioned2019-10-17T13:29:24Z
dc.date.accessioned2025-09-08T23:24:27Z
dc.date.available2019-10-17T13:29:24Z
dc.date.issued2019-06-19
dc.description.abstractThroughout history several forecasting models have emerged with the objective of understanding the behavior of asset price series in the financial market. The advancement of computational power has facilitated the creation of new, increasingly complex models that arise for this purpose. However, even with the use of advanced machine learning techniques using a large volume of historical data, this task remains quite challenging, remaining an open problem. The objective of this work is to create automated strategies of operation in the market, based on a forecast model of trends in the prices of financial series, through machine learning. A recurrent neural network Long Short Term Memory is used as the predictive model. The paper also aims to demonstrate that several of the financial series have a temporal correlation, even if small, which allows the construction of forecasting models that are based on historical data. In order to demonstrate this correlation, the statistical properties of the series are analyzed and hypothesis tests are applied to them. The work presents a robust methodology from the data collection to the simulation of operation in the market involving the operating costs for 38 assets of the Brazilian stock exchange. The methodology further presents a method for creating a more correlated attribute with future values by means of a linear combination of the historical series in different time lags. The results obtained are promising since the best forecasting models obtained Accuracy values of up to 63% and financial return values of up to 47%. The best cases outperformed both in terms of prediction and in terms of financial return compared to baselines techniques as random classifier, Buy and Hold strategy, SELIC and CDI rates.
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.identifier.urihttps://hdl.handle.net/1843/30444
dc.languagepor
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectCiência de dados
dc.subjectAprendizado do Computador
dc.subjectBolsa de Valores
dc.subject.otherMercado de Ações
dc.subject.otherCiência de Dados
dc.subject.otherSéries Financeiras
dc.subject.otherAnálise Estatística
dc.subject.otherAprendizado de Máquina
dc.subject.otherRedes Neurais
dc.titleCiência de dados e aprendizado de máquina para predição em séries temporais financeiras
dc.typeDissertação de mestrado
local.contributor.advisor1Adriano César Machado Pereira
local.contributor.advisor1Latteshttp://lattes.cnpq.br/6813736989856243
local.contributor.referee1Arthur Rodrigo Bosco de Magalhães
local.contributor.referee1Cristiano Abrex Valle
local.contributor.referee1Pedro Olmo Stancioli Vaz de Melo
local.creator.Latteshttp://lattes.cnpq.br/9071526158656506
local.description.resumoAo longo da história surgiram diversos modelos de previsão com o objetivo de compreender o comportamento de séries de preços de ativos no mercado financeiro. O avanço do poder computacional tem facilitado a criação de novos modelos, cada vez mais complexos, que surgem com este propósito. Entretanto, mesmo com a utilização de técnicas avançadas de aprendizado de máquina utilizando um volume grande de dados históricos, tal tarefa continua sendo bastante desafiadora, permanecendo como um problema em aberto. O objetivo deste trabalho é criar estratégias automatizadas de operação no mercado, baseadas em um modelo de previsão de tendências nos preços das séries financeiras, por meio de aprendizado de máquina. É utilizada uma rede neural recorrente Long Short Term Memory como modelo de previsão. O trabalho também tem como objetivo demonstrar que várias das séries financeiras possuem uma correlação temporal, mesmo que pequena, o que viabiliza a construção de modelos de previsão que se baseiam em dados históricos. Para demonstrar essa correlação são analisadas as propriedades estatísticas das séries e aplicados testes de hipóteses nas mesmas. O trabalho apresenta uma metodologia robusta desde a coleta dos dados, até a simulação de operação no mercado envolvendo os custos de operação para 38 ativos da bolsa de valores brasileira. A metodologia ainda apresenta um método para criação de uma nova série mais correlacionada com valores futuros por meio de uma combinação linear das séries históricas em diferentes lags de tempo. Os resultados obtidos demonstram ser promissores, uma vez que os melhores modelos de predição obtiveram valores de Acurácia de até 63% e valores de retorno financeiro de até 47%. Os melhores casos obtiveram desempenhos superiores, tanto em termos de classificação quanto em termos de retorno financeiro comparados aos baselines de classificador aleatório, estratégia de Buy and Hold, taxas SELIC e CDI.
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Ciência da Computação

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
CaioMarioHenriquesSilvaRochaMesquita.pdf
Tamanho:
3.82 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: