Aplicações de aprendizagem de máquina na estimação de qualidade de enlace em comunicações sem fio

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Machine learning applications in link quality Estimation in wireless communications

Primeiro orientador

Membros da banca

Francisco Rodrigo Porto Cavalcanti
José Ferreira de Rezende
Luiz Filipe Menezes Vieira
Marcos Augusto Menezes Vieira

Resumo

A popularização dos dispositivos embarcados e a sua comunicação direta sem fio, i.e. comunicação máquina a máquina (M2M), é uma tendência crescente nas redes atuais. Um número cada vez maior de dispositivos embarcados suporta diferentes tipos de aplicações, tais como cuidados de saúde, vigilância, monitoramento de gás entre outros, que exigem um nível elevado de confiabilidade de comunicação, devido à informação crítica que carregam. No entanto, o uso de muitos desses dispositivos aumenta a concorrência para o espectro de frequência, dificultando a obtenção de uma comunicação confiável. Para superar essas limitações, o uso de estimadores de qualidade de enlace (LQE – do inglês Link Quality Estimators) é crucial para proporcionar uma comunicação eficiente. Com o objetivo de possibilitar uma comunicação robusta e rápida sob condições adversas, tais como ruídos, este trabalho propõe dois novos LQE, chamados PRR2 e LQM, que utilizam múltiplas métricas de qualidade de enlace e diferentes estratégias para o cômputo da estimativa. O estimador PRR2 capta variações de qualidade do enlace no curto prazo, mas também considera as variações de longo prazo. O estimador LQM utiliza técnicas de aprendizado de máquina com detecção e tratamento de concept drift para prover uma estimativa precisa. Ambos estimadores propostos são comparados com o estado-daarte em um protótipo usando rádios USRPs (Universal Software Radio Peripheral), e os resultados mostram que as propostas aumentam a confiabilidade dos enlaces ao reduzir o número de retransmissões em até 61% e ao aumentar a taxa de entrega em até 43%.

Abstract

The popularization of embedded devices and their direct wireless communication, i.e., machine-to-machine (M2M) communication, is a growing trend in today’s networks. An increasing number of embedded devices support different types of applications, such as healthcare, surveillance, gas monitoring, among others, which require a high level of communication reliability due to the critical information they carry. However, the use of many of these devices increases competition for the frequency spectrum, making it difficult to achieve reliable communication. To overcome these limitations, the use of link quality estimators (LQE - Link Quality Estimators) is crucial to provide efficient communication. In order to enable a robust and fast communication under adverse conditions, such as noise, this work proposes two new LQE, called PRR2 and LQM, which use multiple link quality metrics and different strategies for calculating the estimate. The PRR2 estimator captures variations in link quality in the short term, but also considers long-term variations. The LQM estimatotors are compared with the state-of-the-art in a prototype using USRPs (Universal Software Radio Peripheral) radios, and the results show that the proposals increase the reliability of the links by reducing the number of retransmissions by up to 61% and by increase the delivery rate by up to 43%.

Assunto

Computação – Teses, Estimação de qualidade de enlace – Teses, Redes de sensores sem fio – Teses, Aprendizado de máquina – Teses

Palavras-chave

Estimadores de qualidade de enlace, Aprendizagem de máquina, Comunicação máquina a máquina, LQM, PRR2

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Acesso Aberto