Linear growth of the entanglement entropy and the Kolmogorov-Sinai rate

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

The rate of entropy production in a classical dynamical system is characterized by the Kolmogorov-Sinai entropy rate hKS given by the sum of all positive Lyapunov exponents of the system. We prove a quantum version of this result valid for bosonic systems with unstable quadratic Hamiltonian. The derivation takes into account the case of time-dependent Hamiltonians with Floquet instabilities. We show that the entanglement entropy SA of a Gaussian state grows linearly for large times in unstable systems, with a rate ΛA ≤ hKS determined by the Lyapunov exponents and the choice of the subsystem A. We apply our results to the analysis of entanglement production in unstable quadratic potentials and due to periodic quantum quenches in many-body quantum systems. Our results are relevant for quantum field theory, for which we present three applications: a scalar field in a symmetry-breaking potential, parametric resonance during post-inflationary reheating and cosmological perturbations during inflation. Finally, we conjecture that the same rate ΛA appears in the entanglement growth of chaotic quantum systems prepared in a semiclassical state.

Abstract

Assunto

Teoria de campos, Teoria quântica de campos, Sistemas quânticos

Palavras-chave

Field theories in lower dimensions, Lattice quantum field theory, Quantum dissipative systems

Citação

Curso

Endereço externo

https://link.springer.com/article/10.1007/JHEP03(2018)025

Avaliação

Revisão

Suplementado Por

Referenciado Por