Machine learning for perovskites' reap-rest-recovery cycle

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

Perovskite photovoltaics are efficient and inexpensive, yet their performance is dynamic. In this Perspective, we examine the effects of H 2 O, O 2 , bias, temperature, and illumination on device performance and recovery. First, we discuss pivotal experiments that evaluate perovskites’ ability to go through a reap-rest-recovery (3R) cycle, and how machine learning (ML) can help identify the optimum values for each operating parameter. Second, we analyze perovskite dynamics and degradation, emphasizing the research challenges surrounding this 3R cycle. We then outline experiments that could identify the impact of environmental factors on recovery for different perovskite compositions. Finally, we propose an ML paradigm for maximizing long-term performance and predicting device performance recovery, including a shared-knowledge repository. By reframing perovskites’ optoelectronic transiency within the context of recovery rather than degradation, we highlight a set of research opportunities and the artificial intelligence solutions needed for the commercial adoption of these promising solar cell materials.

Abstract

Assunto

Aprendizado do computador

Palavras-chave

Machine learning

Citação

Curso

Endereço externo

https://www.sciencedirect.com/science/article/pii/S2542435118305543

Avaliação

Revisão

Suplementado Por

Referenciado Por