Modelos de regressão t-Tobit com erros nas covariáveis

dc.creatorGustavo Henrique Mitraud Assis Rocha
dc.date.accessioned2019-08-09T16:02:27Z
dc.date.accessioned2025-09-08T23:31:31Z
dc.date.available2019-08-09T16:02:27Z
dc.date.issued2014-10-07
dc.description.abstractIn this work, we develop a non-standard linear regression analysis by considering that the dependent variable is censored and also that some of the explanatory variables are measured with additive errors. In addition, our censored measurement error regression model is speci ed by assuming heavy-tailed distributions for the underlying probabilistic process. Speci cally, our analysis focuses on assuming a multivariate Student-t joint distribution for the error terms and the unobserved true covariates. In this sense, the proposed model will be robust enough to protect our inferences of atypical or in uential observations. For the model estimation, we consider the maximum likelihood methodology, in which we include the estimation of the asymptotic variance of the maximum likelihood estimators and we also develop an EM type algorithm to obtain the estimates, and also the Bayesian paradigm, in which we use a data augmentation approach and develop a MCMC algorithm to sample from the posterior distributions. The proposed methodology is exible enough to be adapted for heavy-tailed distributions coming from the class of scale mixture of the normal distribution. The performance of the newly developed methodology is evaluated throughout a Monte Carlo study as well as a case sudy analysis.
dc.identifier.urihttps://hdl.handle.net/1843/BUBD-9UNGM5
dc.languagePortuguês
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectAnálise de regressão
dc.subjectEstatística
dc.subjectProbabilidades
dc.subjectDistribuição (Probabilidades)
dc.subject.otherEstátistica
dc.titleModelos de regressão t-Tobit com erros nas covariáveis
dc.typeTese de doutorado
local.contributor.advisor-co1Reinaldo Boris Arellano Valle
local.contributor.advisor1Rosangela Helena Loschi
local.contributor.referee1Reinaldo Boris Arellano Valle
local.contributor.referee1Marcos Oliveira Prates
local.contributor.referee1Lourdes Coral Contreras Montenegro
local.contributor.referee1Manuel Jesus Galea Rojas
local.contributor.referee1Filidor Edilfonso Vilca Labra
local.description.resumoNeste trabalho é desenvolvida uma análise de regressão linear considerando que a variável dependente é censurada e também que algumas das variáveis explicativas são medidas com erros aditivos. Esse modelo de regressão censurado com erros de medidas é especificado assumindo distribuições com cauda pesada para o processo probabilístico. Especificamente, assume-se uma distribuição t-Student multivariada para modelar o comportamento conjunto dos erros e das verdadeiras covariáveis não observadas. Nesse sentido, o modelo será robusto o suficiente para proteger as inferências de observações atípicas e influentes. Para a estimação do modelo considera-se a metodologia de máxima verossimilhança, em que inclui-se a estimação da variância assintótica dos estimadores de máxima verossimilhança e também desenvolve-se um algoritmo do tipo EM para obter as estimativas, e também o paradigma bayesiano, onde considera-se o procedimento de aumento de dados e desenvolve-se um algoritmo MCMC para amostrar das distribuições a posteriori. A metodologia proposta flexível o bastante para ser adaptada para distribuições com caudas pesadas vindas da classe de misturas de escala da distribuição normal. A performance da nova metodologia desenvolvida é avaliada através de um estudo Monte Carlo e também de uma análise de um estudo de caso.
local.publisher.initialsUFMG

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
tese_ghmar_vfinal.pdf
Tamanho:
1.28 MB
Formato:
Adobe Portable Document Format