Width optimization of RBF kernels for binary classification of support vector machines: a density estimation-based approach
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Artigo de periódico
Título alternativo
Primeiro orientador
Membros da banca
Resumo
Kernels are often used for modelling non-linear data, developing a main role in models like the SVM. The optimization of its parameters to better fit each dataset is a frequently faced challenge: A bad choice of kernel parameters often implies a poor model. This problem is usually worked out using exhaustive search approaches, such as cross-validation. These methods, however, do not take into account existent information on data arrangement. This paper proposes an alternative approach, based on density estimation. By making use of density estimation methods to analyze the dataset structure, it is proposed a function over the kernel parameters. This function can be used to choose the parameters that best suit the data.
Abstract
Assunto
Aprendizagem supervisionada (Aprendizado do computador), Mineração de dados (Computação) - Métodos estatísticos
Palavras-chave
Classification, RBF Kernel, Support vector machine, Density estimation
Citação
Departamento
Curso
Endereço externo
https://www.sciencedirect.com/science/article/pii/S0167865519302156