Uma arquitetura híbrida para sistemas cognitivos e sua aplicação em prognóstico de falhas em transformadores de potência

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Primeiro orientador

Membros da banca

Ricardo de Oliveira Duarte
Joao Antonio de Vasconcelos
Cristiano Leite de Castro
Joao Bosco Augusto London Junior
Guilherme de Alencar Barreto

Resumo

Este projeto propõe uma arquitetura de um framework para exportar serviços e facilidades para a implementação de sistemas baseados em conhecimento. O framework utiliza conceitos de modelos embrionário, conexionista e evolucionário. Além disso, foram mapeadas correlações entre sistemas computacionais com cognição natural, formação e representação do conhecimento. Desta forma, este framework facilita a implementação de sistemas inteligentes genéricos. A abordagem conexionista emprega aprendizado em conjunto (ensemble learning) pelo seu potencial para se atingir maior precisão e robustez. Aprendizagem em conjunto pode integrar diferentes classificadores baseados em aprendizado de máquina, que estão disponíveis na literatura, e, também, baseados em métodos estatísticos. A abordagem simbólica emprega um processo evolucionário para abstrair a dinâmica do conhecimento. A principal contribuição do projeto consiste na utilização de abordagens simbólica e conexionista para cobrir todos os aspectos de representação do conhecimento. Como resultado, foi implementado um sistema capaz de gerar prognóstico de falhas em transformadores de potência.

Abstract

This project proposes a framework architecture to export services and facilities for the implementation of knowledge-based systems. The framework utilizes concepts from embryonic, connectionist and evolutionary approaches. Additionally, we map correlations between computational systems with natural cognition, knowledge formation and representation. This way, this framework facilitates the implementation of generic intelligent systems. The connectionist approach employs ensemble learning for its potential in achieving higher accuracy and robustness. Ensemble learning can combine together different classifiers based on machine learning that are available in the literature and statistical methods. The symbolic approach employs an evolutionary method to permit the knowledge dynamics. The main contribution of the project relies in the utilization of symbolic and connexionist approaches to cover all the knowledge representation aspects. As result, was implemented a system able to generate fault prognosis in power transformers.

Assunto

Engenharia elétrica, Localização de falhas (Engenharia), Transformadores eletricos

Palavras-chave

Prognósticos de falhas, Sistemas cognitivos, Transformadores de potência

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por