Estimando modelos dinâmicos utilizando o INLA para campos aleatórios Markovianos não gaussianos

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Glaura da Conceicao Franco
Dani Gamerman
Braulio Figueiredo Alves da Silva

Resumo

Modelos de Espaço de Estados, também referidos como Modelos Dinâmicos, constituem uma maneira útil de descrever a evolução de variáveis temporais através de um sistema de evolução latente estruturado. Integrated Nested Laplace Approximation (INLA) é uma recente abordagem proposta para realizar inferência Bayesiana rápida em Modelos Gaussianos Latentes que englobam Modelos Dinâmicos. A princípio, a abordagem INLA é limitada à estimações onde o campo latente é assumido Gaussiano o que inviabiliza a estimação de Modelos Dinâmicos onde o ruído do sistema latente seja não-Gaussiano. O objetivo deste trabalho é descrever a metodologia INLA, Modelos Dinâmicos, e como contornar o problema descrito apresentando uma maneira de estimação utilizando o INLA para Modelos Dinâmicos Robustos quando o campo latente segue uma distribuição t-Student. Estudos de simulação para diversos cenários foram conduzidos enaltecendo a importância desta abordagem robusta quando a série temporal apresenta o que é conhecido na literatura como Outliers Inovativos. Por fim, duas aplicações foram conduzidas ilustrando os modelos apresentados; a primeira aplicação em dados anuais de homicídio de municípios brasileiros e a segunda em dados mensais de casos de dengue no estado de Minas Gerais.

Abstract

State-space models, also referred as Dynamic Models, is a useful way to describe the evolution of a time series variable through a structured latent evolution system. Integrated Nested Laplace Approximation (INLA) is a recent approach proposed to perform fast Bayesian inference in Latent Gaussian Models which naturally comprises Dynamic Models. Originally, the INLA approach is retricted to perform estimates where the Latent Field is assumed to be Gaussian distributed, which make not possible the estimation of Dynamic Models assuming a non-Gaussian distribution for the latent system noise. The objective of this work is to describe the INLA methodology, Dynamic Models, and how to overcome this issue presenting a way to use INLA for Robust Dynamic Models assuming a Student-t Random Field. Simulations under several scenarios were conducted highlighting the importance of this robust approach when time series present what is called in the literature as Innovative Outliers. At last, two application were conducted exemplifying the presented models; the first application is on annual homicide data of brazilian cities and the second on monthly data of dengue fever of the brazilian state of Minas Gerais.

Assunto

Markov, Campos aleatórios de, Estatística, Analise por conglomerados

Palavras-chave

Outliers inovativos, INLA, Inferência Bayesiana, Modelos dinâmicos

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por