Uso de espectrofotometria FTIR (Fourier Transform Infrared) e mineração de dados para a detecção e identificação de adulterantes no leite cru

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Use of FTIR (Fourier Transform Infrared) spectrophotometry and data mining for the detection and identification of adulterants in raw milk

Primeiro orientador

Membros da banca

Leorges Moraes da Fonseca
Sérgio Vale Aguiar Campos
Bruna Maria Salotti de Souza
Marco Antônio Sloboda Cortez
Elisa Helena Paz Andrade

Resumo

O leite é um alimento de alto valor biológico frequentemente envolvido em fraudes, cuja prática gera não apenas prejuízos econômicos, mas também riscos à saúde do consumidor. Atualmente, os métodos de detecção de adulterantes no leite cru previstos pela legislação brasileira apresentam limitações em relação à sua sensibilidade analítica, além de serem demorados, consumirem grandes quantidades de reagentes e gerarem resíduos poluentes. Por esses motivos, vêm sendo substituídos por métodos instrumentais mais eficientes, a exemplo da espectroscopia FTIR (Fourier Transform Infrared), associadas a técnicas de mineração de dados, que permitem a detecção e identificação desses adulterantes. O objetivo deste trabalho foi detectar e identificar as adulterações nos dados espectrais das amostras de leite analisadas pelo espectrofotômetro FTIR, por meio das classificações por aprendizagem profunda e aprendizagem em conjunto. Foram avaliadas 9.788 amostras de leite, das quais 2.376 foram adicionadas de amido, sacarose, bicarbonato de sódio, peróxido de hidrogênio e formaldeído, em concentrações, temperaturas e tempos de armazenamento distintos. Diferentes classificadores foram utilizados para treinar modelos capazes de reconhecer as alterações provocadas pelos adulterantes nas características de composição normal do leite. Foram realizadas as classificações binárias e multiclasse com os subconjuntos selecionados de treinamento e testes para os classificadores Gradient Boosting Machine (GBM), Random Forests (RF) e Convolutional Neural Networks (CNN). A classificação foi realizada usando dois tipos de dados: o espectro total do infravermelho foi analisado pela CNN, e os componentes numéricos extraídos do equipamento, pelos classificadores GBM e RF. Para os métodos em conjunto (GBM e RF), as precisões de classificação variaram de 93,18% a 98,72%. Já a CNN proposta produziu precisões de até 99,34%. Ambos os métodos apresentaram alta precisão, porém a CNN obteve melhores resultados, uma vez que utiliza um conjunto de dados mais denso (coordenadas espectrais). Assim, de acordo com a arquitetura CNN proposta, pode-se predizer, com mais de 99% de acurácia, que a amostra analisada está ou não adulterada (método de triagem) e, ainda mais, em caso positivo, identificar qual o adulterante adicionado no modelo treinado. Portanto, o presente trabalho contribui sobremaneira para a fiscalização agropecuária nacional, uma vez que fornece respaldo metodológico para a detecção de fraudes, visando à garantia de autenticidade, qualidade e de saúde pública na cadeia produtiva do leite.

Abstract

Milk is a high biological value food often involved in fraud, whose practice generates not only economic losses, but also risks to consumer health. Currently, the methods for detecting adulterants in raw milk provided by Brazilian legislation have limitations in relation to their analytical sensitivity, as well as being time consuming, consuming large quantities of reagents and generating pollutant residues. For these reasons, they have been replaced by more efficient instrumentation methods, such as FTIR spectroscopy, associated with data mining techniques that allow the detection and identification of these adulterants. The objective of this work was to detect and identify the adulterations in the spectral data of the milk samples analyzed by the FTIR spectrophotometer, through the classifications by deep and ensemble learning. A total of 9,788 milk samples were evaluated, of which 2,376 were adulterated with starch, sucrose, sodium bicarbonate, hydrogen peroxide and formaldehyde at different concentrations, temperatures and storage times. Different classifiers were used to train models capable of recognizing the alterations caused by the adulterants in the characteristics of normal milk composition. Binary and multiclass classifications were performed with the selected training and test subsets for the Gradient Boosting Machine (GBM), Random Forests (RF) and Convolutional Neural Networks (CNN) classifiers. The classification was performed using two types of data: the total infrared spectrum was analyzed by CNN, and the numerical components extracted from the equipment, by GBM and RF classifiers. For the ensemble methods (GBM and RF), the classification accuracies ranged from 93.18% to 98.72%. The CNN proposal, however, produced precision of up to 99.34%. Both methods presented high precision, but the CNN obtained better results, since it uses a more dense set of data (spectral coordinates). In other words, according to the proposed CNN architecture, one can predict with >99% accuracy that the analyzed sample is unadulterated (screening method) and, even more so, to identify which adulterant is added in the trained model, greatly contributing to the agricultural inspection, aiming at the guarantee of authenticity, quality and public health.

Assunto

Palavras-chave

Leite - análise -, Leite adulteração inspeção

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por