Avaliação de técnicas de regularização aplicadas as redes neurais nebulosas

dc.creatorPaulo Vitor de Campos Souza
dc.date.accessioned2019-08-13T13:59:57Z
dc.date.accessioned2025-09-08T23:39:22Z
dc.date.available2019-08-13T13:59:57Z
dc.date.issued2015-10-09
dc.description.abstractThis paper proposes a new training algorithm for fuzzy neural networks that is able to generate parsimonious models with some degree of interpretability. In some cases, as in fuzzy neural networks learning can become a very slow and complex task. In this work learning is performed based on concepts of extreme learning machines to estimate parameters and a feature selection technique based on regularization and resampling called bootstrap lasso, to define the network topology. The use of regularization in the inner layers of the model enables it to be more precise in its answers, and concise set of fuzzy rules can be extracted from the resulting topology allowing the interpretability of the results. Numerical results are presented for pattern classification problems using real bases of large and small dimensions. The results are compared to other classifiers reference in the literature. Statistical analysis of the results suggests that the proposed algorithm has a similar accuracy to regularized extreme machine learning models, but with an interpretable topology.
dc.identifier.urihttps://hdl.handle.net/1843/BUBD-A46LSF
dc.languagePortuguês
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectBootstrap (Estatística)
dc.subjectEngenharia elétrica
dc.subjectRedes neurais (Computação)
dc.subjectNeurônios
dc.subject.otherRegularização
dc.subject.otherBootstrap lasso
dc.subject.otherRedes neurais nebulosas
dc.subject.otherNeurônios lógicos nebulosos
dc.titleAvaliação de técnicas de regularização aplicadas as redes neurais nebulosas
dc.typeDissertação de mestrado
local.contributor.advisor1Andre Paim Lemos
local.contributor.referee1Walmir Matos Caminhas
local.contributor.referee1Cristiano Leite de Castro
local.description.resumoEste trabalho propõe um novo algoritmo de treinamento para redes neurais nebulosas que é capaz de gerar modelos parcimoniosos e com algum grau de interpretabilidade. Em alguns casos, como em redes neurais nebulosas, o aprendizado pode-se tornar uma tarefa muito complexa e lenta. Nesse trabalho o aprendizado é realizado baseando-se em conceitos de máquinas de aprendizado extremo para estimativa dos parâmetros e em uma técnica de seleção de características baseada em regularização e reamostragem, denominada bootstrap lasso, para definição da topologia da rede. A utilização da regularização nas camadas internas do modelo permite que este seja mais preciso em suas respostas e que um conjunto de regras nebulosas seja extraído de sua topologia possibilitando a interpretabilidade dos resultados obtidos. Experimentos numéricos são apresentados para problemas de classificação de padrões utilizando bases reais de pequenas e grandes dimensões. Os resultados obtidos são comparados a outros classificadores de referência na literatura. A análise estatística dos resultados sugere que o algoritmo proposto possui uma acurácia similar a modelos de máquina de aprendizado extremo regularizados, porém com uma topologia interpretável.
local.publisher.initialsUFMG

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
disserta__o_paulo_vitor_de_campos_souza.pdf
Tamanho:
1.96 MB
Formato:
Adobe Portable Document Format