Reconfiguration blocks for fault-tolerant control of nonlinear systems

dc.creatorIury Valente de Bessa
dc.date.accessioned2022-08-16T18:56:51Z
dc.date.accessioned2025-09-09T00:21:01Z
dc.date.available2022-08-16T18:56:51Z
dc.date.issued2022-06-01
dc.description.abstractIndustrial processes and technological systems are becoming more and more autonomous and complex. Consequently, the demand for the safety and reliability of these systems is increasing. In this context, process monitoring and fault-tolerant control (FTC) have received a lot of attention during the last decades to provide analytical redundancy to these processes and improve their reliability. This thesis addresses the problem of FTC for nonlinear systems based on the fault hiding approach. Fault hiding consists in inserting a reconfiguration block (RB) between the faulty plant and the controller. The RB mitigates the fault effects by dispensing with the controller redesign, through recovering sensor measurements and reallocation of the control effort required by a controller that does not receive the information about the fault occurrence. Although effective, most of the fault hiding approaches available in the literature do not cover all classes of nonlinear systems, and they are sensitive to fault estimation inaccuracy because the canonical RB structures, known as virtual sensors and actuators, rely on the internal model principle. In this sense, this thesis addresses the problem of fault hiding for nonlinear systems based on novel RB structures whose parameters do not exhibit explicit dependence on the fault model. This thesis presents a novel constructive design with sufficient conditions based on linear matrix inequalities (LMIs) for guaranteeing stability recovery by fault hiding. For obtaining those conditions, three novel classes of approaches are proposed, namely: a Lyapunov-based approach wherein a Lyapunov function is obtained in a stability analysis step for the nominal system, then it is used to design the RBs for stability recovery of the reconfigured system in a synthesis step; a dissipativity based approach wherein dissipation inequalities are obtained in an analysis step for the nominal system, then they are used to design the RBs for dissipativity recovery of the reconfigured system in a synthesis step; finally, a passivation-based fault hiding approach is proposed to compute RBs with dissipativity properties which compensate for the lack of passivity of the closed-loop system due to the fault occurrence.
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.description.sponsorshipOutra Agência
dc.identifier.urihttps://hdl.handle.net/1843/44290
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pt/
dc.subjectEngenharia elétrica
dc.subjectFalha de sistema (Engenharia)
dc.subjectDesigualdades matriciais lineares
dc.subjectSistemas não lineares
dc.subject.otherFault-tolerant control
dc.subject.otherFault hiding
dc.subject.otherNonlinear system
dc.subject.otherLinear matrix inequalities
dc.subject.otherPolytopic differential inclusions
dc.subject.otherDissipativity theory
dc.subject.otherPassivation
dc.titleReconfiguration blocks for fault-tolerant control of nonlinear systems
dc.title.alternativeBlocos de reocnfiguração para controle tolerante a falhas de sistemas não-lineares
dc.typeTese de doutorado
local.contributor.advisor1Reinaldo Martínez Palhares
local.contributor.advisor1Latteshttp://lattes.cnpq.br/1268773789851994
local.contributor.referee1Alexandre Sanfelice Bazanella
local.contributor.referee1Diego de Sousa Madeira
local.contributor.referee1Marcelo Carvalho Minhoto Teixeira
local.contributor.referee1Roberto Kawakami Harrop Galvão
local.contributor.referee1Tiago Roux de Oliveira
local.creator.Latteshttp://lattes.cnpq.br/7433480638156752
local.description.resumoOs processos industriais estão se tornando cada vez mais autônomos e complexos. Consequentemente, a demanda por segurança e confiabilidade desses processos é crescente. Nesse contexto, técnicas de controle tolerante a falhas (FTC, do inglês Fault-Tolerant Control) têm recebido bastante atenção ao longo das últimas décadas buscando fornecer redundância analítica e aumentar a confiabilidade desses sistemas. Esta tese aborda o problema de FTC para sistemas não-lineares baseado na abordagem de ocultação de falhas. A ocultação de falhas consiste na inserção de um bloco de reconfiguração (RB, do inglês Reconfiguration Block) entre a planta com falhas e o controlador. O RB mitiga os efeitos das falhas sem exigir reprojeto do controlador, do qual as falhas são ocultadas. Embora eficazes, a maioria das abordagens de ocultação de falhas na literatura não cobrem todas as classes de sistemas não-lineares, além de serem sensíveis a imprecisões na estimativa das falhas devido à dependência das estruturas canônicas de RB, conhecidas como sensores e atuadores virtuais, em relação ao princípio do modelo interno. Nesse sentido, esta tese aborda a ocultação de falhas para sistemas não-lineares baseada em novos RBs cujos parâmetros não dependem explicitamente do modelo de falhas. Para tal, condições suficientes baseadas em desigualdades matriciais lineares (LMIs, do inglês Linear Matrix Inequalities) são apresentadas para o projeto de RBs que garantam a recuperação da estabilidade. Para obter essas condições, três novas classes de abordagens são propostas, a saber: uma abordagem baseada em Lyapunov em que uma função de Lyapunov é obtida em uma etapa de análise do sistema nominal e, em seguida, é usada para projetar os RBs para recuperação de estabilidade do sistema reconfigurado em uma etapa de síntese; uma abordagem baseada em dissipatividade na qual as desigualdades de dissipação são obtidas em uma etapa de análise para o sistema nominal e, em seguida, são usadas para projetar os RBs para recuperação de dissipatividade do sistema reconfigurado em uma etapa de síntese; finalmente, uma abordagem baseada em passivação é proposta para obter RBs cuja dissipatividade compensem a falta de passividade devido à ocorrência de falhas.
local.identifier.orcid0000-0002-6603-3476
local.publisher.countryBrasil
local.publisher.departmentENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICA
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Engenharia Elétrica

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
thesis.pdf
Tamanho:
4.69 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: