Probabilidade de ruína com fluxo de caixa e investimento governados por processos de difusão.

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Adrian Pablo Hinojosa Luna
Bernardo Nunes Borges de Lima
Catia Regina Gonçalves

Resumo

O problema da ruína tem sido amplamente investigado sob diferentes suposições para o processo estocástico que modela as reservas de uma companhia de seguros. O foco desta dissertação consiste em estudar uma das mais importantes partes da matemática atuarial, a qual é reconhecida como Teoria da Ruína, dando ênfase ao cálculo da probabilidade de ruína de uma seguradora com o capital sujeito a investimento a uma taxa de juros constante. Supõe-se que as indenizações pagas pela seguradora têm distribuição do tipo cauda leve, o que na prática significa que nenhuma delas é grande o suficiente para afetar o resultado total significativamente. Este estudo começa com a descrição do modelo de risco sem investimentos fazendo-se, em particular, uma descrição minuciosa do modelo clássico de Cramér-Lundberg, o qual descreve, de maneira simples, a evolução do capital de uma companhia de seguros. Em seguida apresenta-se o modelo de risco com investimento, o qual descreve o capital de uma companhia de seguros que recebe juros de suas reservas a uma taxa constante no tempo. Feito isto, passa-se ao modelo de difusão para a reserva de uma seguradora. Salienta-se que este tópico será visto com um cuidado maior que os demais, sendo analisado em todos os detalhes. Considera-se um processo de risco com investimento das reservas, de forma que o fluxo de caixa e a taxa acumulada de juros são aproximados por processos de difusão com coeficientes dependendo do tempo e do atual saldo financeiro. Estuda-se uma equação diferencial parcial (ordinária) para a probabilidade de ruína em tempo finito (infinito). Nesta dissertação investiga-se o regime de validade desta aproximação comparando a solução numérica da referida equação diferencial parcial com os valores obtidos por simulação das probabilidades de ruína em tempo finito para o modelo de risco com investimento, para diferentes tipos de distribuição das indenizações. Realiza-se também o mesmo tipo de comparação para a probabilidade de ruína em tempo infinito. Neste caso, a solução da equação diferencial ordinária é exata e uma técnica de mudança de medida deve ser realizada a fim de realizar as simulações. Constata-se que a qualidade das aproximações depende dos parâmetros do modelo. Um objeto de estudo para o futuro seria encontrar uma relação entre os parâmetros, a qual defina em quais situações a aproximação por difusão é satisfatória.

Abstract

Assunto

Estatística, Atuária, Seguros, Seguro de risco Modelos matemáticos

Palavras-chave

Investimento, Fluxo de Caixa, Teoria da Ruina, Probabilidades

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por