Lagrangian decomposition methods for large-scale fixed-charge capacitated multicommodity network design problem

dc.creatorRui Sá Shibasaki
dc.date.accessioned2020-12-15T16:57:36Z
dc.date.accessioned2025-09-08T22:54:15Z
dc.date.available2020-12-15T16:57:36Z
dc.date.issued2020-09-22
dc.description.abstractTipicamente presente nas áreas de logística e telecomunicações, o problema de síntese de redes multi-fluxo de custo fixo e capacitada permanece desafiador, especialmente quando contextos de grande escala estão envolvidos. Nesse caso, a capacidade de produzir soluções de boa qualidade em um tempo computacional praticável depende da disponibilidade de algoritmos eficientes. Nesse sentido, a presente tese propõem abordagens lagrangianas capazes de fornecer limites relativamente próximos ao ótimo para instâncias de grande escala. A eficiência dos métodos depende do algoritmo aplicado para resolver duais Lagrangianos, portanto escolhemos entre dois dos solvers mais eficientes da literatura: o Algoritmo de Volume e o Método Bundle, proporcionando uma comparação entre eles. Os resultados mostraram que o Algoritmo de Volume é mais eficiente no contexto considerado, sendo o escolhido para o desenvolvimento do projeto de pesquisa. Uma primeira heurística Lagrangiana foi desenvolvida para produzir soluções viáveis de boa qualidade para o problema, obtendo resultados muito melhores do que Cplex, para as maiores instâncias. Em relação aos limites inferiores, um algoritmo Relax-and-Cut foi implementado incorporando análise de sensibilidade e uma normalização das restrições, o que melhorou os resultados. Os aumentos nos limites inferiores atingiram 11%, mas em média permaneceram abaixo de 1%. O algoritmo Relax-and-Cut foi então incluído em um esquema Branch-and-Cut, para resolver programas lineares em cada nó da árvore de busca. Além disso, uma heurística de Feasibility Pump lagrangiana foi implementada para acelerar a busca por boas soluções viáveis. Os resultados obtidos mostraram que o esquema proposto é competitivo com os melhores algoritmos da literatura, e fornece os melhores resultados em contextos de larga escala. Além disso, foi testada uma versão heurística do algoritmo Branch-and-Cut baseado no Feasibility Pump lagrangiano, proporcionando os melhores resultados em geral quando comparada às heurísticas mais eficientes da literatura.
dc.description.sponsorshipFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais
dc.identifier.urihttps://hdl.handle.net/1843/34511
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/
dc.subjectEngenharia de produção
dc.subjectAlgoritmos
dc.subjectHeurística
dc.subject.otherMulticommodity network design
dc.subject.otherLagrangian relaxation
dc.subject.otherVolume algorithm
dc.subject.otherBundle method
dc.subject.otherRelax-and-Cut
dc.subject.otherBranch- and-Cut
dc.titleLagrangian decomposition methods for large-scale fixed-charge capacitated multicommodity network design problem
dc.title.alternativeMétodos de decomposição lagrangiana para problema de síntese de redes multi-fluxo de custo fixo
dc.typeTese de doutorado
local.contributor.advisor-co1Philippe Mahey
local.contributor.advisor-co1Mourad Baïou
local.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8308891394810420
local.contributor.advisor1Maurício Cardoso de Souza
local.contributor.advisor1Latteshttp://lattes.cnpq.br/2834522198832797
local.contributor.referee1Nelson Maculan Filho
local.contributor.referee1Denis Cornaz
local.contributor.referee1Jean-Philippe Gayon
local.contributor.referee1Hande Yaman
local.contributor.referee1Francisco Barahona
local.creator.Latteshttp://lattes.cnpq.br/7861160392673953
local.description.resumoTypically present in logistics and telecommunications domains, the Fixed- Charge Multicommodity Capacitated Network Design Problem remains challenging, especially when large-scale contexts are involved. In this particular case, the ability to produce good quality solutions in a reasonable amount of time leans on the availability of efficient algorithms. In that sense, the present thesis proposed Lagrangian approaches that are able to provide relatively sharp bounds for large-scale instances of the problem. The efficiency of the methods depends on the algorithm applied to solve Lagrangian duals, so we choose between two of the most efficient solvers in the literature: the Volume Algorithm and the Bundle Method, providing a comparison between them. The results showed that the Volume Algorithm is more efficient in the present context, being the one kept for further research. A first Lagrangian heuristic was devised to produce good quality feasible solutions for the problem, obtaining far better results than Cplex, for the largest instances. Concerning lower bounds, a Relax-and-Cut algorithm was implemented embedding sensitivity analysis and constraint scaling, which improved results. The increases in lower bounds attained 11%, but on average they remained under 1%. The Relax-and-Cut algorithm was then included in a Branch-and-Cut scheme, to solve linear programs in each node of the search tree. Moreover, a Feasibility Pump heuristic using the Volume Algorithm as a solver for linear programs was implemented to accelerate the search for good feasible solutions in large-scale cases. The obtained results showed that the proposed scheme is competitive with the best algorithms in the literature, and provides the best results in large-scale contexts. Moreover, a heuristic version of the Branch-and-Cut algorithm based on the Lagrangian Feasibility Pump was tested, providing the best results in general, when compared to efficient heuristics in the literature.
local.identifier.orcid0000-0002-5561-4937
local.publisher.countryBrasil
local.publisher.departmentENG - DEPARTAMENTO DE ENGENHARIA PRODUÇÃO
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Engenharia de Produção

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Lagrangian Decomposition Methods for Large-Scale Fixed-Charge Capacitated Multicommodity Network Design Problem.pdf
Tamanho:
1.83 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: