Previsão do tempo de resposta de aplicações paralelas de processamento de dados massivos em ambientes de nuvem

dc.creatorTulio Braga Moreira Pinto
dc.date.accessioned2022-08-10T19:28:11Z
dc.date.accessioned2025-09-09T01:17:42Z
dc.date.available2022-08-10T19:28:11Z
dc.date.issued2019-07-15
dc.description.abstractThe popularity of online and data-intensive applications presented new challenges to computing. Although cloud computing technology has enabled on-demand resource scheduling, the data access heterogeneity and irregularity of data-intensive applications have increased the difficulty of both hardware and software resource scheduling. Nonetheless, the performance prediction (e.g.: response time) of such applications increase in complexity as all these characteristics are combined. Thus, this research explores two analytical models for the response time prediction of parallel applications running on Apache Spark, one of the most popular frameworks for massive data-processing. The first model is based on a fork/join queues, in which an application is split into N tasks and processed in parallel in multiple servers. This model captures the synchronization delays perceived in the slowest server. The second model is based on queuing networks. It considers the precedence relationship between the application tasks to compute the synchronization delays. Multiple experimental scenarios were considered, including the parallel wordcount algorithm, machine learning common algorithms, such as SVM, Logistic Regression, and K-Means, and ad-hoc data analytics queries. The precedence relationship model presented a mean error less than 20% for most of the experimental scenarios, which is typically considered reasonable for analytical models. Yet, both models presented execution times in the range of milliseconds. Such a low execution time enables the usage of the models for the dynamic provisioning of parallel systems, an important task to guarantee the quality of service of massive data-processing applications. Both the analytical models were compared to the DagSim simulation model, the state-of-art model for performance prediction of Hadoop and Spark applications.
dc.description.sponsorshipOutra Agência
dc.identifier.urihttps://hdl.handle.net/1843/44157
dc.languagepor
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/
dc.subjectComputação – Teses
dc.subjectComputação em nuvem – Teses
dc.subjectSistemas distribuídos – Teses
dc.subjectProcessamento massivo de dados – Teses
dc.subject.otherPrevisão de desempenho
dc.subject.otherComputação em nuvem
dc.subject.otherSpark
dc.subject.otherProcessamento massivo de dados
dc.subject.otherAplicações paralelas
dc.subject.otherSistemas distribuídos
dc.titlePrevisão do tempo de resposta de aplicações paralelas de processamento de dados massivos em ambientes de nuvem
dc.title.alternativeResponse time prediction of parallel applications for big data processing in cloud environments
dc.typeDissertação de mestrado
local.contributor.advisor-co1Ana Paula Couto da Silva
local.contributor.advisor1Jussara Marques de Almeida
local.contributor.advisor1Latteshttp://lattes.cnpq.br/3286329883412205
local.contributor.referee1Fabrício Murai Ferreira
local.contributor.referee1Dorgival Olavo Guedes Neto
local.creator.Latteshttp://lattes.cnpq.br/9963538235164080
local.description.resumoA popularização das aplicações online e intensas em dados nos últimos anos trouxe consigo novos desafios à computação. Apesar de a flexibilidade e a elasticidade da computação em nuvem terem facilitado a alocação de recursos de hardware e software sob demanda, a heterogeneidade e a irregularidade nos padrões de acesso das aplicações massivas em dados, por outro lado, tornaram esta tarefa mais desafiadora. Em consequência, a combinação destas características tornam a previsão de desempenho (p. ex: previsão do tempo de resposta das aplicações) mais complexa. Sendo assim, este trabalho explora dois modelos analíticos para a previsão do tempo de resposta de aplicações paralelas na plataforma Spark, muito popular para processamento de grandes volumes de dados. O primeiro modelo é baseado em um fork/join, no qual uma aplicação é dividida em N tarefas que são processadas em paralelo em múltiplos servidores. Este modelo captura o tempo do servidor mais lento para computar os atrasos de sincronização. O segundo modelo é baseado em teoria de filas e considera a precedência entre as tarefas para estimar os atrasos de sincronização. Múltiplos cenários experimentais são considerados, incluindo atividades recorrentes como o wordcount, algoritmos frequentemente utilizados em aprendizado de máquina, como o SVM, o Logistic Regression e o K-Means, e consultas ad-hoc comuns em análise de dados. Para o modelo baseado em precedência de tarefas, os resultados das previsões apresentaram erro médio inferior a 20% para a maioria dos cenários, considerado tipicamente baixo para modelos analíticos. Ainda, com um tempo de execução na casa dos milissegundos, este modelo se mostrou eficaz para a reconfiguração dinâmica de sistemas paralelos, tarefa importante na garantia de qualidade de serviço das aplicações massivas em dados. Ambos os modelos fork/join e de precedência de tarefas são comparados com o modelo de simulação DagSim, considerado estado da arte para previsão de desempenho de aplicações Hadoop e Spark.
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Ciência da Computação

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Dissertacao-Tulio-Aprovada-Catalografica-Final-2022.pdf
Tamanho:
1.33 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: