Eficiência da estimação da área foliar de couve por meio de redes neurais artificiais
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Artigo de periódico
Título alternativo
Primeiro orientador
Membros da banca
Resumo
A estimativa da área foliar na couve é importante, pois medidas diretas são difíceis e imprecisas, devido ao tamanho da folha, a irregularidade da superfície foliar de alguns genótipos, a necessidade de equipamentos caros e de muita mão-de-obra. Objetivou-se verificar a eficiência da estimação da área foliar de couve por meio de RNAs e constatar a eficiência desta estratégia em comparação com o uso da área foliar observada. O experimento foi conduzido em delineamento de blocos casualizados com três repetições, 22 acessos e quatro plantas por parcela. Desenvolveram-se perceptrons de multicamadas utilizando 50 folhas por acesso, destinando-se 70% para treinamento, 15% para a validação cruzada (early-stop) e 15% para teste. Foram testadas 39 configurações de rede perceptron de multicamadas. As RNAs foram eficientes para estimar a área foliar da couve a partir do comprimento e largura do limbo foliar. A área foliar estimada pela RNA é indicada para a seleção de plantas por ser de fácil obtenção, ser um método não destrutivo, apresentar alta correlação fenotípica e genética com a área foliar observada e maior herdabilidade.
Abstract
A estimativa da área foliar na couve é importante, pois medidas diretas são difíceis e imprecisas, devido ao tamanho da folha, a irregularidade da superfície foliar de alguns genótipos, a necessidade de equipamentos caros e de muita mão-de-obra. Objetivou-se verificar a eficiência da estimação da área foliar de couve por meio de RNAs e constatar a eficiência desta estratégia em comparação com o uso da área foliar observada. O experimento foi conduzido em delineamento de blocos casualizados com três repetições, 22 acessos e quatro plantas por parcela. Desenvolveram-se perceptrons de multicamadas utilizando 50 folhas por acesso, destinando-se 70% para treinamento, 15% para a validação cruzada (early-stop) e 15% para teste. Foram testadas 39 configurações de rede perceptron de multicamadas. As RNAs foram eficientes para estimar a área foliar da couve a partir do comprimento e largura do limbo foliar. A área foliar estimada pela RNA é indicada para a seleção de plantas por ser de fácil obtenção, ser um método não destrutivo, apresentar alta correlação fenotípica e genética com a área foliar observada e maior herdabilidade.
Assunto
Couve, Perceptrons, Perceptrons, Inteligencia artificial
Palavras-chave
Citação
Departamento
Curso
Endereço externo
https://www.scielo.br/j/hb/a/pRQdQF4bm8x3vbchnhd8CjR/?msclkid=c2b0731aaf5f11ec9a43763c38927dc5