Multi-phase NMPC strategy for safe navigation in unknown environments using polynomial zonotopes

dc.creatorIuro B. P. Nascimento
dc.creatorBrenner S. Rego
dc.creatorLuciano Cunha de Araújo Pimenta
dc.creatorGuilherme Vianna Raffo
dc.date.accessioned2025-06-03T13:57:55Z
dc.date.accessioned2025-09-09T00:27:23Z
dc.date.available2025-06-03T13:57:55Z
dc.date.issued2023
dc.identifier.doihttps://doi.org/10.20906/SBAI-SBSE-2023/3999
dc.identifier.urihttps://hdl.handle.net/1843/82733
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofXVI Simpósio Brasileiro de Automação Inteligente e X Simpósio Brasileiro de Sistemas Elétricos
dc.rightsAcesso Aberto
dc.subjectRobótica
dc.subject.otherNMPC, Obstacle Avoidance, MPC, Mobile Robot
dc.titleMulti-phase NMPC strategy for safe navigation in unknown environments using polynomial zonotopes
dc.typeArtigo de evento
local.citation.epage7
local.citation.spage1
local.description.resumoThis study presents a novel approach for guiding robots through cluttered and unknown environments. The approach utilizes multi-phase non-linear model predictive control (NMPC) and polynomial zonotopes (PZs) to describe collision-free areas (CFAs). Laser sensor data is processed to obtain the CFA, which is divided into convex subregions. These subregions are then transformed into PZs, which provide constraints for the optimal control problem (OCP) of the NMPC. Compared to conventional half-space representations, PZs require fewer constraints, resulting in a more efficient method for describing the same polytopes. The proposed approach employs a multi-phase method that divides the trajectory into segments and applies individual subregion convex constraints to each segment. This result is a reduction in the number of constraints per segment. Numerical experiments with a wheeled mobile robot are conducted to demonstrate the effectiveness of the proposed approach.
local.publisher.countryBrasil
local.publisher.departmentENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICA
local.publisher.initialsUFMG
local.url.externahttps://www.sba.org.br/open_journal_systems/index.php/sbai/article/view/3999

Arquivos

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: