Feedback linearization and control design for nonlinear descriptor systems
| dc.creator | Elvis Mayk Chaves Barbosa | |
| dc.creator | Fernando de Oliveira Souza | |
| dc.creator | Reinaldo Martinez Palhares | |
| dc.date.accessioned | 2025-05-06T13:47:28Z | |
| dc.date.accessioned | 2025-09-09T00:51:01Z | |
| dc.date.available | 2025-05-06T13:47:28Z | |
| dc.date.issued | 2019 | |
| dc.identifier.issn | 2358-4483 | |
| dc.identifier.uri | https://hdl.handle.net/1843/82046 | |
| dc.language | eng | |
| dc.publisher | Universidade Federal de Minas Gerais | |
| dc.relation.ispartof | 14º Simpósio Brasileiro de Automação Inteligente | |
| dc.rights | Acesso Aberto | |
| dc.subject | Sistemas difusos | |
| dc.subject | Sistemas não lineares | |
| dc.subject.other | Nonlinear Descriptor Systems | |
| dc.subject.other | Feedback Linearization | |
| dc.subject.other | Canonical Controllable Form | |
| dc.title | Feedback linearization and control design for nonlinear descriptor systems | |
| dc.type | Artigo de evento | |
| local.citation.epage | 6 | |
| local.description.resumo | This paper deals with the stabilization problem of continuous-time nonlinear descriptor systems. The methodological contribution is to propose a state transformation based on a canonical controllable form, originally proposed for linear descriptor systems, such that a feedback linearizable nonlinear descriptor model can be achieved and, consequently, the control law design designed. The closed-loop stability is checked in the sense of the standard Lyapunov theory. Two examples are presented to illustrate details of implementation. The concluding remarks discuss about the eectiveness and drawbacks of the proposed strategy. | |
| local.publisher.country | Brasil | |
| local.publisher.department | ENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICA | |
| local.publisher.initials | UFMG | |
| local.url.externa | https://proceedings.science/sbai-2019/papers/feedback-linearization-and-control-design-for-nonlinear-descriptor-systems |
Arquivos
Licença do pacote
1 - 1 de 1