Singular Levi-flat hypersurfaces

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Membros da banca

Marcio Gomes Soares
Mauricio Barros Correa Junior
Rogerio Santos Mol
Alcides Lins Neto
César Leopoldo Camacho Manco

Resumo

Nesta tese estudamos germes de hipersuperfícies real-analíticas Levi-flat singulares com dois propósitos distintos. Mostramos a existência de formas normais para germes de hipersuperfícies real-analítica Levi-flat singulares que são definidas pelo anulamento da parte real de polinômios complexos quase homogêneos com singularidade isolada. Este resultado generaliza resultados prévios de Burns-Gong [7] e Fernández-Pérez [15]. Ademais, mostramos a existência de duas novas formas normais rígidas para germes de hipersuperfícies real-analítica Levi-flat singulares que são preservadas por uma mudança de coordenadas isócoras, isto é, uma mudança de coordenadas que preserva volume. Além disso, tratamos do problema de encontrar condições suficientes para garantir a coincidência das curvas de nível de uma função holomorfa com as folhas da folheação de Levi em um germe de hipersuperfície real-analítica Levi-flat com singularidade isolada. Para um germe de hipersuperfície real-analítica irredutível em (...) com singularidade isolada não-dicrítica, mostramos que as folhas da folheação de Levi sempre coincidem com as curvas de nível de valores reais de uma função holomorfa. No caso dicrítico, umcontra-exemplo deste resultado é dado.

Abstract

In this thesis we study germs of singular real-analytic Levi-flat hypersurfaces with two distinct purposes. We show the existence of normal forms for germs of singular Levi-flat hypersurfaces which are defined by the vanishing of the real part of complex quasihomogeneous polynomials with isolated singularity. This result generalizes previous results of Burns-Gong [7] and Fernández-Pérez [15]. Furthermore, we show the existence of two new rigid normal forms for germs of singularreal-analytic Levi-flat hypersurfaces which are preserved by a change of isochore coordinates, that is, a change of coordinates that preserves volume. Moreover, we address the problem of finding sufficient conditions to guarantee the coincidence of the level sets of a holomorphic function with the leaves of the Levi foliation on a germ of a real-analytic Levi-flat hypersurface with isolated singularity. For a germ of irreducible real-analytic Levi-flat hypersurface at (...) with a nondicritical isolated singularity, we show that the leaves of the Levi foliation coincide with the level sets of real values of a holomorphic function. In the dicritical case, acounter-example of this result is given.

Assunto

Matemática, Folheações (Matemática), Singularidades (Matemática), Hipersuperficies

Palavras-chave

Hipersuperfícies Levi-flat, Coordenadas isócoras, Folheações holomorfas

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por