Emprego de técnicas de machine learning na predição de morte em pacientes hospitalizados com COVID-19: uma revisão sistemática

Descrição

Tipo

Artigo de evento

Título alternativo

Employment of machine learning techniques in predicting death in patients hospitalized with COVID-19: a systematic review

Primeiro orientador

Membros da banca

Resumo

A pandemia da COVID-19 tem exaurido recursos humanos e materiais dos sistemas de saúde, urgindo uma otimização desses processos. Assim, a utilização da inteligência artificial surge como potencial aliada para melhor manejar os cuidados. Objetivo: Analisar o emprego de Machine Learning (ML) para predizer a morte de pacientes hospitalizados com COVID-19. Métodos: Foi realizada uma revisão sistemática seguindo a metodologia PRISMA. Foram consultadas as bases PUBMED, COCHRANE, SCIELO, IEEE, SCOPUS e BVS. Foram incluídos estudos primários contendo pacientes hospitalizados com COVID-19 confirmado por RT-PCR, em que foi utilizado o ML para predizer o prognóstico de morte. Foram excluídos simulações, estudos de pacientes com comorbidades específicas e estudos sem número de pacientes. Resultados: 9 estudos foram incluídos. O maior valor de AUC (Área sob a curva ROC) encontrado foi 1.00 e o menor 0.66. Os sistemas de ML utilizaram parâmetros clínicos, laboratoriais e/ou de imagem. Conclusão: Os algoritmos utilizados apresentaram bons resultados e podem auxiliar na predição do desfecho do paciente hospitalizado com COVID-19, melhorando a assistência e alocação de recursos.

Abstract

COVID-19 pandemic has been consuming human and material resources from health systems, pointing the need to optimize these processes. Thus, artificial intelligence techniques emerge as potential allies to better manage care. Aim: Analyze the use of Machine Learning (ML) to predict death of hospitalized patients with COVID-19. Methods: Systematic review following PRISMA guidelines. Bases searched: PUBMED, COCHRANE, SCIELO, IEEE, SCOPUS and BVS. Were included primary studies analyzing hospitalized patients with COVID-19 confirmed by RT-PCR, in which ML was used to predict death prognosis. Were excluded simulations, studies containing patients with specific comorbidities and studies without number of patients. Results: 9 studies were included. Highest AUC (Area Under ROC curve) found was 1.00 and lowest 0.66. ML systems used clinical, laboratorial and/or imaging parameters. Conclusion: Models analyzed revealed great results and may help to predict the outcome of patients hospitalized with COVID-19, improving care and resources allocation.

Assunto

COVID-19 (Doença), COVID-19 Pandemia, 2020, Inteligência artificial, Aprendizado do computador, Mortalidade

Palavras-chave

COVID-19, Inteligência artificial, Morte

Citação

Curso

Endereço externo

http://sbis.org.br/artigos-publicados-nos-anais-estendidos-do-xviii-cbis-2021/

Avaliação

Revisão

Suplementado Por

Referenciado Por