Predição de tempo de execução de tarefas em grades computacionais para recursos não dedicados
Carregando...
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Dissertação de mestrado
Título alternativo
Primeiro orientador
Membros da banca
Bruno Schulze
Jussara Marques de Almeida
Jussara Marques de Almeida
Resumo
A predição do tempo de execução de jobs para recursos de grades computacionais (grid) é uma dado importante para escalonadores e brokers. As grades computacionais, por configurarem ambientes compostos por diversos e diferentes recursos e usuários, com diferentes tipos de jobs, não seguindo um padrão para sua submissão, tornam a predição do tempo de execução de jobs um grande desafio. Neste trabalho abordamos o problema de predição do tempo de execução de jobs para recursos não dedicados. Para tratar deste problema baseamo-nos em uma metodologia proposta no trabalho de tese de doutorado de Lílian Noronha Nassif, chamada PredCase, que se mostrou eficiente para predição do tempo para recursos dedicados. Em nosso método, chamado NdrPredCase, utilizamos casos passados de execução de jobs para calcular a predição do tempo de execução para um novo job, como é feito no PredCase. A partir do paradigma de Raciocínio Baseado em Casos (RBC) desenvolvemos as fases do NdrPredCase: recuperação dos casos similares ao novo job, reúso dos casos recuperados para gerar uma solução inicial, adaptação da solução para a carga de trabalho prevista e armazenamento das informações de descrição do job, do cálculo da predição e de sua execução. A maior contribuição deste trabalho é a adaptação da solução inicial obtida a partir dos casos passados, utilizando a relação entre a carga de trabalho passada com a carga de trabalho prevista para a execução do job. Os resultados dos experimentos realizados mostraram que o NdrPredCase tem uma boa acurácia para o cálculo de predição de jobs para recursos não dedicados quando temos um número de casos passados suficientemente grande, e é eficiente quanto ao desempenho para calcular a predição.
Abstract
Runtime prediction of jobs to grid resource is an important data to schedulers and brokers. Grids configure environment composed by distinct and several resources and users, with different kind of jobs, do not have a pattern to submission of job, and hence runtime prediction of job is a large challenge. This work explore the problem of runtime prediction of jobs to non-dedicated resources. We treat this problem based in a methodology proposal in Ph.D. thesis of Lilian Noronha Nassif, named PredCase, it showed a efficient methodology for dedicated resources. In our method, named NdrPredCase, we utilize past cases of runtime jobs to calculate the runtime prediction to a new job, how done in PredCase. We utilized the paradigm Case-Based Reasoning to develop the NdrPredCase phases: retrieval cases alike to new job, reuse this cases to calculate the initial solution, adaptation of solution to a forecast workload and retain information about job description, solution description and running data. The main contribution of this work is the adaptation of a initial solution, it calculated with past cases, using a relation of previous workload and forecast workload to running job. Results of experiments demonstrated that NdrPredCase has a good accuracy to calculate runtime prediction to non-dedicated resources if the amount of past cases is sufficient, and that NdrPredCase has a good performance to calculate this prediction.
Assunto
Computação em Grade (Sistemas de computador), Computação, Redes de computação
Palavras-chave
predição de tempo de execução, grade computacional