Descrição semântica de objetos em imagens baseada na Teoria dos Protótipos

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Semantic description of objects in images based on Prototype Theory

Membros da banca

Anderson de Rezende Rocha
Wagner Meira Junior
Renato José Martins
Luiz Chaimowicz

Resumo

Esta pesquisa tem como objetivo propor um modelo para a descrição semântica das características de objetos a partir de imagens. Apresenta-se uma nova abordagem de descrição semântica de objetos fundamentada na Teoria dos Protótipos. Propõe-se o Modelo Computacional do Protótipo (CPM) para codificar e armazenar o significado semântico central (protótipo semântico) das categorias de objetos. O modelo CPM é utilizado para representar e construir os protótipos semânticos das categorias de objetos usando as Redes Neuronais Convolucionais (CNN). Propõe-se um Modelo de Descrição Semântica baseado em Protótipos que usa o modelo CPM proposto para descrever objetos de maneira a destacar as características que os distinguem dentro de uma categoria.O Descritor Semântico Global proposto (GSDP) constrói assinaturas discriminativas, de baixa dimensionalidade, interpretáveis e que codificam a informação semântica dos objetos por meio dos protótipos semânticos construídos. O descritor semântico GSDP usa a Camada de Similaridade Prototípica (PS-Layer) proposta para recuperar o protótipo correspondente à categoria de interesse usando o princípio de categorização baseado em protótipos. Os experimentos realizados utilizando conjuntos de dados de domínio público mostraram que: i) o modelo CPM proposto simula adequadamente a estrutura interna das categorias; ii) a métrica de distância proposta apresenta poder expressivo para capturar a tipicidade do objeto dentro da categoria; iii) a classificação semântica baseada em protótipos pode melhorar o desempenho dos modelos CNN de classificação; iv) a codificação do descritor semântico proposto é semanticamente interpretável e supera significativamente em desempenho outras codificações globais de imagem em tarefas de agrupamento e classificação.

Abstract

This research aims to build a model for semantic description of objects based on features detected in images. We introduce a novel semantic description approach inspired on the Prototype Theory foundations. Inspired by the human approach used for representing categories, we propose a novel Computational Prototype Model (CPM) that encodes and stores the central semantic meaning of the object’s category: the semantic prototype. Our CPM model is used to represent and construct the semantic prototypes of object categories using Convolutional Neural Networks (CNN). The proposed Prototype-based Description Model uses the CPM model to describe an object highlighting its most distinctive features within the category. Our Global Semantic Descriptor (GSDP) builds discriminative, low-dimensional and semantically interpretable signatures that encode the semantic information of the objects using the constructed semantic prototypes. Our semantic descriptor use the proposed Prototypical Similarity Layer (PS-Layer) to retrieves the category prototype using the principle of categorization based on prototypes. In our experiments, using publicly available datasets, we show that: i) the proposed CPM model adequately simulates the internal semantic structure of the categories; ii) the proposed semantic distance metric can be understood as the object typicality score within a category; iii) our semantic classification method based on prototypes can improve the performance and interpretation of CNN classification models; iv) our semantic descriptor encoding ignificantly outperforms others state-of-the-art image global encoding in clustering and classification tasks.

Assunto

Computação – Teses, Teoria dos protótipos – Teses, Aprendizado profundo – Teses, Visão computacional – Teses

Palavras-chave

Visão computacional, Aprendizagem profunda, Teoria dos Protótipos, Efeitos prototípicos, Descrição semântica, Computer vision, Deep learning, Prototype Theory, Prototypicality effects, Semantic description

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Acesso Aberto