Equivalência de estruturas de modelos não lineares

dc.creatorAlípio Monteiro Barbosa
dc.date.accessioned2019-08-13T05:11:29Z
dc.date.accessioned2025-09-08T23:18:36Z
dc.date.available2019-08-13T05:11:29Z
dc.date.issued2015-08-19
dc.description.abstractSystem identication aims to obtain mathematical models that describe the behavior of a dynamic system from measurements. A typical problem is to select a few models among many possibilities. The construction of nonlinear models, in particular the structure selection stage presents challenges for which there is no conclusive solutions. In view of practical limitations it is not always possible to nd the best model structure. It does not seem necessary or justiable to seek, in practical situations, a single best model structure. This work proposes a way to select from a pool of candidate structures, a subset of model structures that is consistent with the data. The solution proposed to solve this problem is a procedure based on Pareto sets and hypothesis testing to discriminate model structures. The result of the proposed method is a subset of model structures that is not distinguishable in terms of Pareto curves, for the used data, given a userdened condence level. As a byproduct, for each representative structure is possible to obtain an uncertainty region D(P) determined on the Pareto plane. The region D(P) is converted into parametric uncertainty that can be used in robust control methods.
dc.identifier.urihttps://hdl.handle.net/1843/BUOS-AVSN2F
dc.languagePortuguês
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectEngenharia elétrica
dc.subjectControle robusto
dc.subjectSistemas não lineares
dc.subject.otherIdenticação relevante para controle
dc.subject.otherIdenticação multiobjetivo de sistemas não lineares
dc.subject.otherSeleção de estruturas
dc.subject.otherIncerteza intervalar
dc.titleEquivalência de estruturas de modelos não lineares
dc.typeTese de doutorado
local.contributor.advisor-co1Ricardo Hiroshi Caldeira Takahashi
local.contributor.advisor1Luis Antonio Aguirre
local.description.resumoA identicação de sistemas tem como nalidade obter modelos matemáticos que descrevam o comportamento de um sistema dinâmico a partir de mediçôes. Um problema típico é selecionar uns poucos modelos entre muitas possibilidades. A construção de modelos não lineares, em particular a etapa de seleção de estruturas, apresenta desaos para os quais não há soluções conclusivas. Tendo em vista que a quantidade e a qualidade de dados de identicação é limitada, nem sempre é possível encontrar a melhor estrutura do modelo. Também não parece necessário nem justicável procurar, em situações práticas, uma única estrutura de modelo. Este trabalho, portanto, propõe uma forma de selecionar, a partir de um conjunto de estruturas candidatas, aquelas que parecem mais consistentes com os dados. A solução proposta para este problema foi um método de discriminação de estruturas de modelos com base em um teste de hipótese não paramétrico e conjuntos Pareto referentes a cada estrutura candidata. O resultado do método proposto é um subconjunto de estruturas de modelos que, do ponto de vista de curvas Pareto, não se distinguem entre si, dentro dos limites de conança utilizados. Como subproduto, para cada estrutura representativa é possível obter uma região de incerteza D(P) determinada no plano de Pareto. A regiao D(P) ´e convertida em incerteza intervalar nos parametros que pode ser usada em métodos de controle robusto.
local.publisher.initialsUFMG

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
tese_alipio_barbosa.pdf
Tamanho:
6.12 MB
Formato:
Adobe Portable Document Format