Análise de sobrevivência na presença de censura informativa: uma abordagem Bayesiana

dc.creatorRenata Camila de Souza
dc.date.accessioned2019-08-12T11:56:28Z
dc.date.accessioned2025-09-09T01:30:32Z
dc.date.available2019-08-12T11:56:28Z
dc.date.issued2015-06-26
dc.description.abstractMost procedures found in the literature to model survival data are based on the assumption of non-informative censoring mechanism, meaning that failure and censored times are independent. Although independence is a model assumption, testing this condition requires additional data which are often unavailable. In several real situations this assumption is not valid and the censoring mechanism is thus called informative. An alternative for data modeling under censoring mechanism is based on the inclusion of a random effect known as frailty, which influences both failure and censoring times. In this study, two Bayesian models are proposed: in one of them, the frailty effect is related to the censoring times through a parameter, the other one considers a mixture distribution to model the frailty effect. These models can indicate the type of association and, consequently, the censoring mechanism of the data. A simulated study, focused on the Weibull distribution, considering different failure proportions, sample sizes and correlation type between failure and censoring was developed to compare the performances of some model specifications: (i) without frailty, (ii) with frailty only on the failure component, (iii) frailty in both components and affected by a censoring parameter, (iv) with frailty in both components but affecting the censoring via mixture. Finally, the models are applied to real data.
dc.identifier.urihttps://hdl.handle.net/1843/BUOS-A3ZFFU
dc.languagePortuguês
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectAnálise de regressão
dc.subjectEstatística
dc.subjectAnálise de sobrevivência (Biometria)
dc.subjectTeoria bayesiana de decisão estatistica
dc.subject.otherCensura informativa
dc.subject.otherFragilidade
dc.subject.otherAnálise de sobrevivência
dc.subject.otherModelo de mistura
dc.subject.otherEstatística Bayesiana
dc.titleAnálise de sobrevivência na presença de censura informativa: uma abordagem Bayesiana
dc.typeDissertação de mestrado
local.contributor.advisor-co1Fabio Nogueira Demarqui
local.contributor.advisor1Vinicius Diniz Mayrink
local.contributor.referee1Fabio Nogueira Demarqui
local.contributor.referee1Leonardo Soares Bastos
local.contributor.referee1Enrico Antonio Colosimo
local.contributor.referee1Magda Carvalho Pires
local.description.resumoGrande parte dos procedimentos existentes na literatura para a modelagem de dados de sobrevivência baseiam-se na suposição de que o mecanismo de censura é não informativo, ou seja, que os tempos de falha e censura são independentes. Apesar da independência ser uma suposição da modelagem, testar essa condição requer informações adicionais sobre os dados que normalmente não estão disponíveis. Em diversas situações reais, tal suposição não é válida e o mecanismo gerador de censura e dito informativo. Uma alternativa para modelagem de dados sob o mecanismo de censura informativo baseia-se na inclusão de um efeito aleatório, conhecido como fragilidade, que afeta tanto os tempos de falha quanto de censura. Neste trabalho, propomos dois modelos paramétricos: em um modelo o efeito da fragilidade é relacionado aos tempos de censura por meio de um parâmetro e o outro considera uma mistura para modelar o efeito da fragilidade. Estes modelos permitem que o tipo de correlação e, consequentemente, o mecanismo de censura do conjunto de observações seja apontado pelos dados. Um estudo simulado, com foco na distribuição Weibull, considerando diferentes proporções de falha, tamanho amostral e o tipo de correlação entre falha e censura foi realizado para comparação do desempenho de algumas especificações de modelo: (i) sem fragilidade, (ii) com fragilidade apenas no componente de falha, (iii) fragilidade em ambos os componentes e afetada por um parâmetro na censura, (iv) fragilidade em ambos componentes mas modelada por uma mistura na censura. Finalmente, realiza-se uma aplicação destes modelos a dados reais.
local.publisher.initialsUFMG

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
dissertacao_renata_souza_vers_o_final.pdf
Tamanho:
2.35 MB
Formato:
Adobe Portable Document Format