On weighted Sobolev spaces: Trudinger-Moser and isoperimetric inequalities

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Membros da banca

Ederson Moreira dos Santos
Ezequiel Rodrigues Barbosa
Lucas Catão de Freitas Ferreira
Marcos da Silva Montenegro

Resumo

O objetivo geral da tese é o estudo de Equações Diferenciais Parciais Elípticas. A tese é dividida em duas Partes: (I) Desigualdade do Tipo Trudinger-Moser sobre espaços de Sobolev com pesos; e (II) A existência e não-existência de desigualdades isoperimétricas com pesos monomiais diferentes. Na Parte I, estabelecemos uma desigualdade do tipo Trudinger-Moser sobre espaços de Sobolev com pesos sobre o intervalo $(0,+\infty)$, relacionada com a classe de operadores elípticos quasilineares cuja forma radial é dada por $\displaystyle Lu:=-r^{-\theta} (r^{\alpha}\vert u'(r)\vert^{\beta}u'(r))',$ onde $\theta, \beta\geq 0$ e $\alpha>0$, são constantes satisfazendo algumas condições de existência. Vale enfatizar que esses operadores generalizam o $p$-Laplaceano e $k$- Hessiana, no caso radial. Os resultados envolvem dimensão fracionária, um princípio de P\'olya-Szeg{\"o} com pesos e uma limitação para a constante ótima associada com a desigualdade do tipo Gagliardo-Nirenberg. Na Parte II, consideramos pesos monomiais $x^{A}=\vert x_{1}\vert^{a_{1}}\ldots\vert x_{N}\vert^{a_{N}}$, onde $a_{i}$ é um número real não negativo para cada $i\in\{1,\ldots,N\}$, e estabelecemos a existência e não-existência de desigualdades isoperimétricas com pesos monomiais diferentes. Estudamos minimizadores positivos de $\int_{\partial\Omega}x^{A}\mathcal{H}^{N-1}(x)$ sobre todos os conjuntos abertos, limitados e suaves cujo volume $\int_{\Omega}x^{B}dx$ é fixo.

Abstract

The main topic of the thesis is the study of Elliptic Partial Differential Equations. The thesis is divided into two Parts: (I) Trudinger-Moser Type inequality on weighted Sobolev spaces; and (II) on existence and nonexistence of isoperimetric inequalities with different monomial weights. In part I, we establish the Trudinger-Moser inequality on weighted Sobolev spaces in the whole space, and for a class of quasilinear elliptic operators in radial form of the type $\displaystyle Lu:=-r^{-\theta} (r^{\alpha}\vert u'(r)\vert^{\beta}u'(r))',$ where $\theta, \beta\geq 0$ and $\alpha>0$, are constants satisfying some existence conditions. It is worth emphasizing that these operators generalize the $p$- Laplacian and $k$-Hessian operators in the radial case. Our results involve fractional dimensions, a new weighted P\'olya-Szeg{\"o} principle, and a boundness value for the optimal constant in a Gagliardo-Nirenberg type inequality. In part II, we consider the monomial weight $x^{A}=\vert x_{1}\vert^{a_{1}}\ldots\vert x_{N}\vert^{a_{N}}$, where $a_{i}$ is a nonnegative real number for each $i\in\{1,\ldots,N\}$, and we establish the existence and nonexistence of isoperimetric inequalities with different monomial weights. We study positive minimizers of $\int_{\partial\Omega}x^{A}\mathcal{H}^{N-1}(x)$ among all smooth bounded open sets $\Omega$ in $\mathbb{R}^{N}$ with fixed Lebesgue measure with monomial weight $\int_{\Omega}x^{B}dx$.

Assunto

Matemática – Teses, Equações diferenciais Elípticas – Teses., Sobolev, Espaço de - Teses

Palavras-chave

weighted Trudinger-Moser inequality, weighted rearrangement, Schwarz symmetrization, isoperimetric inequalities, Sobolev Inequalities, monomial weights

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Acesso Aberto