Operadores de Schrödinger ergódicos em variedades compactas

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Emmanuel Araújo Pereira
Nelson de Oliveira Yokomizo
Gustavo Barbagallo de Oliveira

Resumo

O objetivo deste trabalho é estudar a mensurabilidade e os espectros de operadores aleatórios em variedades compactas, em particular a densidade integrada de estados associada a uma família de operadores de Schrödinger aleatórios. A motivação para este trabalho vem da Física do Estado Sólido, onde procuramos um modelo matemático que descreva como operadores, em especial, o operador de Schrödinger comporta-se em uma variedade, considerando que tanto o operador Laplaciano, quanto o potencial e o tensor métrico da variedade são indexados por elementos de um espaço de probabilidade. É simples imaginar um cenário físico para tal modelo, como por exemplo, uma estrutura cristalina onde não se sabe como as impurezas estão distribuídas pela rede. Para compreender tal modelo, bem como algumas de suas propriedades, estudamos em detalhes todas as definições e todos os resultados apresentados em Integrated Density of states for Random Metrics on Manifolds [LENZ, Daniel; PEYERIMHOFF, Norbert; VESELIĆ, Ivan.].

Abstract

The aim of this work is to study the measurability and spectra of random operators on compact manifolds, in particular the integrated density of states associated with a family of random Schrödinger operators. The motivation for this work comes from Solid State Physics, where we look for a mathematical model that describes how operators, in particular, the Schrödinger operator behaves in a manifold, considering that both the Laplacian operator, the potential and the metric tensor of manifold are indexed by elements of a probability space. It is simple to imagine a physical scenario for such a model, such as a crystalline structure where it is not known how impurities are distributed across the network. To understand this model, as well as some of its properties, we studied in detail all the definitions and all the results presented in Integrated Density of states for Random Metrics on Manifolds [LENZ, Daniel; PEYERIMHOFF, Norbert; VESELIĆ, Ivan.].

Assunto

Operadores de Schrodinger, Operadores aleatórios, Teoria ergódica

Palavras-chave

Operadores de Schrödinger aleatórios, Operadores aleatórios, Variedades riemannianas, Densidade integrada de estados, Teorema ergódico de Lindenstrauss

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por