spsurv: an R package for semi-parametric survival analysis

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

spsurv: an R package for semi-parametric survival analysis

Primeiro orientador

Membros da banca

Marcos Oliveira Prates
Dani Gamerman

Resumo

Avanços na computação e no desenvolvimento de software permitiram cálculos mais complexos e menos custosos no que diz respeito a pesquisas médicas (análise de sobrevivência), a estudos de engenharia (confiabilidade) e a observação de eventos sociais (análise de eventos históricos). Assim sendo, muitos esforços de modelagem semi-paramétrica para dados de tempo até o evento surgiram nos últimos anos. Neste contexto, este trabalho apresenta uma estrutura flexível baseada no polinômio de Bernstein para modelagem de dados de sobrevivência. Essa abordagem inovadora é aplicada na estimação de funções de base desconhecidas inerentes de famílias de modelos existentes na literatura, como modelos de riscos proporcionais, chances proporcionais e tempo de falha acelerado. Além da contribuição literária, este trabalho também contribui com rotinas automatizadas inéditas para a comunidade de usuários da linguagem R, com o suporte de algoritmos implementados no software Stan. Ao final do estudo, a implementação das rotinas propostas foi discutida e avaliada através de estudos de simulação. A criação de um pacote R surge como alternativa para agrupar todas essas importantes contribuições. Além disso, os modelos baseados no polinômio de Bernstein de riscos proporcionais, de chances proporcionais e de tempo de falha acelerado foram ajustados a dados reais de pacientes portadores de câncer, usando tanto o método de estimação por máxima verossimilhança quanto algoritmos Bayesianos.

Abstract

Software development innovations and advances in computing have enabled more complex and less costly computations in medical research (survival analysis), engineering studies (reliability analysis), and social sciences event analysis (historical analysis). As a result, many semi-parametric modeling efforts emerged when it comes to time-to-event data analysis. In this context, this work presents a flexible Bernstein polynomial (BP) based framework for survival data modeling. This innovative approach is applied to existing families of models such as proportional hazards (PH), proportional odds (PO), and accelerated failure time (AFT) models to estimate unknown baseline functions. Along with this contribution, this work also presents new automated routines in R, taking advantage of algorithms available in Stan. The proposed computation routines are tested and explored through simulation studies based on artificial datasets. The tools implemented to fit the proposed statistical models are combined and organized in an R package. Also, the BP based proportional hazards (BPPH), proportional odds (BPPO), and accelerated failure time (BPAFT) models are illustrated in real applications related to cancer trial data using maximum likelihood (ML) estimation and Markov chain Monte Carlo (MCMC) methods.

Assunto

Estatística - Teses, Análise de sobrevivência (Biometria) - Teses, Polinômio de Bernstein - Teses, Analise do tempo de falha - Teses

Palavras-chave

Proportional hazards, Proportional odds, Accelerated failure time, Bernstein polynomial

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por