Geometric approach to robust stability analysis of linear parameter-varying systems: computational trade-offs between the exact and the simplex convex hulls

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

Robust stability is investigated for continuous-time, affine, Linear Parameter-Varying (LPV) models, with bounded variation rates of uncertainty. Towards this end, affine Parameter Dependent Lyapunov Functions (PDLF) are considered to certificate stability in the Lyapunov sense. In the literature, the search for PDLFs amounts to a non conservative Linear Matrix Inequality (LMI) problem, at expense of a factorial growth in its complexity. Remedies to overcome this complexity have been proposed recently, exploiting geometrical aspects of the problem, however, they can be conservative. This paper presents new stability tests that are a trade-off between the exact and the fastest solutions. We offer an analytical procedure to indicate when the proposed tests are prone to reduce conservativeness. Also, a simple procedure is introduced to possibly improve existing and new tests, without impacts on the computation effort. Numerical simulations illustrate the improvements of the proposed strategies.

Abstract

Assunto

Liapunov, Funções de, Sistemas lineares

Palavras-chave

Linear parameter-varying systems, Parameter dependent lyapunov functions, Polytopic geometry, Computational effort

Citação

Curso

Endereço externo

https://www.sciencedirect.com/science/article/pii/S0096300323001868

Avaliação

Revisão

Suplementado Por

Referenciado Por