Comparison of methods for harvest prediction in 'gigante' cactus pear

dc.creatorBruno Vinícius Castro Guimarães
dc.creatorSérgio Luiz Rodrigues Donato
dc.creatorIgnacio Aspiazú
dc.creatorAlcinei Mistico Azevedo
dc.creatorAbner José de Carvalho
dc.date.accessioned2022-03-25T12:28:25Z
dc.date.accessioned2025-09-08T23:02:43Z
dc.date.available2022-03-25T12:28:25Z
dc.date.issued2019
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.description.sponsorshipOutra Agência
dc.identifier.doihttps://doi.org/10.5539/jas.v11n14p216
dc.identifier.issn19169760
dc.identifier.urihttps://hdl.handle.net/1843/40465
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofJournal of agricultural science
dc.rightsAcesso Aberto
dc.subjectCacto
dc.subjectPalma forrageira
dc.subjectÉpoca de colheita
dc.subjectRedes neurais (Computação)
dc.subjectAnálise de variância
dc.titleComparison of methods for harvest prediction in 'gigante' cactus pear
dc.typeArtigo de periódico
local.citation.epage224
local.citation.issue14
local.citation.spage216
local.citation.volume11
local.description.resumoBehavior analysis and plant expression are the answers the researcher needs to construct predictive models that minimize the effects of the uncertainties of field production. The objective of this study was to compare the simple and multiple linear regression methods and the artificial neural networks to allow the maximum security in the prediction of harvest in ‘Gigante’ cactus pear. The uniformity test was conducted at the Federal Institute of Bahia, Campus Guanambi, Bahia, Brazil, coordinates 14°13′30″ S, 42°46′53″ W and altitude of 525 m. At 930 days after planting, we evaluated 384 basic units, in which were measured the following variables: plant height (PH); cladode length (CL), width (CW) and thickness (CT); cladode number (CN); total cladode area (TCA); cladode area (CA) and cladode yield (Y). For the comparison between the artificial neural networks (ANN) and regression models (single and multiple-SLR and MLR), we considered the mean prediction error (MPE), the mean quadratic error (MQE), the mean square of deviation (MSD) and the coefficient of determination (R2).The values estimated by the ANN 7-5-1 showed the best proximity to the data obtained in field conditions, followed by ANN 6-2-1, MLR (TCA and CT), SLR (TCA) and SLR (CN). In this way, the ANN models with the topologies 7-2-1 and 6-2-1, MLR with the variables total cladode area and cladode thickness and SLR with the isolated descriptors total cladode area and cladode number, explain 85.1; 81.5; 76.3; 74.09 and 65.87%, respectively, of the yield variation. The ANNs were more efficient at predicting the yield of the ‘Gigante’ cactus pear when compared to the simple and multiple linear regression models.
local.identifier.orcidhttps://orcid.org/0000-0001-5196-0851
local.publisher.countryBrasil
local.publisher.departmentICA - INSTITUTO DE CIÊNCIAS AGRÁRIAS
local.publisher.initialsUFMG
local.url.externahttps://www.ccsenet.org/journal/index.php/jas/article/view/0/40370?msclkid=02cff214ac3411eca17dec86d5f1f48f

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Comparison of Methods for Harvest Prediction in ‘Gigante’ Cactus Pear.pdf
Tamanho:
933.5 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: