Detecção de vídeos não-colaborativos com base no conteúdo visual em redes sociais para compartilhamento de vídeo

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Membros da banca

Eduardo Alves do Valle Jrunior
Marcos Andre Goncalves
Ricardo da Silva Torres
Wagner Meira Junior
Agma Juci Machado Traina

Resumo

A atuação conjunta desses dois fatores, avanço da tecnologia de geração de vídeo digital e advento das redes sociais virtuais, permitiu a criação de uma nova forma de interação entre as pessoas, as Redes Sociais para Compartilhamento de Vídeo Digital. Novos canais de comunicação, criados a partir da Internet, trouxeram a necessidade de busca e tratamento da informação em níveis nunca antes imagináveis. Essas necessidades, contudo, ainda estão longe de ser atendidas, sobretudo quando nos focamos no vídeo digital. Os usuários anseiam por instrumentos que venham à auxiliá-los na recuperação e manipulação do vídeo que sejam tão eficientes e eficazes quanto os disponíveis para a informação textual. Este trabalho se insere nesse contexto, apresentando uma alternativa para avançar o estado da arte em classificação e recuperação semântica de vídeos digitais, considerando o seu conteúdo visual. É adotada a extração automática de descritores espaço-temporais altamente discriminantes e são empregadas técnicas de aprendizagem de máquina, capazes de prover a generalização necessária para a busca de categorias complexas. O cenário de aplicação adotado é atuação na identificação de vídeos com conteúdo não-colaborativo em vídeos postados em uma rede social virtual para compartilhamento de vídeo digital.

Abstract

In this work we are concerned with detecting non-collaborative videos in video sharing social networks. Specifically, we investigate how much visual content-based analysis can aid in detecting ballot stuffing and spam videos in threads of video responses. That is a very challenging task, because of the high-level semantic concepts involved; of theassorted nature of social networks, preventing the use of constrained a priori information; and, which is paramount, of the context-dependent nature of non-collaborative videos. Content filtering for social networks is an increasingly demanded task: due to their popularity, the number of abuses also tends to increase, annoying the user and disruptingtheir services. We propose a context-aware description, which improves detection considerably in comparison with the baseline bags-of-visual-words model, by allowing us to incorporate the context of the video into the representation. Our model is evaluated in two challenging video dataset and show the feasibility of the proposed approaches.

Assunto

Semântica, Computação, Redes sociais on-line, Vídeo digital

Palavras-chave

SIFT, Redes sociais, Classificação Semântica de vídeos, LSA, STIP

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por