Global simulations of Tayler instability in stellar interiors: the stabilizing effect of gravity

dc.creatorGustavo Andres Guerrero Eraso
dc.creatorFabio Del Sordo
dc.creatorAlfio Maurizio Bonanno
dc.creatorPiotr Krzysztof Smolarkiewicz
dc.date.accessioned2023-11-13T16:02:38Z
dc.date.accessioned2025-09-08T23:38:20Z
dc.date.available2023-11-13T16:02:38Z
dc.date.issued2019
dc.format.mimetypepdf
dc.identifier.doihttps://doi.org/10.1093/mnras/stz2849
dc.identifier.issn1365-2966
dc.identifier.urihttps://hdl.handle.net/1843/60867
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofMonthly Notices of the Royal Astronomical Society
dc.rightsAcesso Aberto
dc.subjectEstrelas
dc.subjectCampos magnéticos
dc.subjectGravidade
dc.subject.otherStars
dc.subject.otherMagnetic field
dc.subject.otherGravity
dc.titleGlobal simulations of Tayler instability in stellar interiors: the stabilizing effect of gravity
dc.typeArtigo de periódico
local.citation.epage4291
local.citation.issue3
local.citation.spage4281
local.citation.volume490
local.description.resumoUnveiling the evolution of toroidal field instability, known as Tayler instability, is essential to understand the strength and topology of the magnetic fields observed in early-type stars, in the core of the red giants, or in any stellar radiative zone. We want to study the non-linear evolution of the instability of a toroidal field stored in a stably stratified layer, in spherical symmetry and in the absence of rotation. In particular, we intend to quantify the suppression of the instability as a function of the Brunt–V¨ais¨ala (ωBV ) and the Alfv´en (ωA ) frequencies. We use the magnetohydrodynamic (MHD) equations as implemented in the anelastic approximation in the EULAG–MHD code and perform a large series of numerical simulations of the instability exploring the parameter space for the ωBV and ωA . We show that beyond a critical value gravity strongly suppress the instability, in agreement with the linear analysis. The intensity of the initial field also plays an important role: weaker fields show much slower growth rates. Moreover, in the case of very low gravity, the fastest growing modes have a large characteristic radial scale, at variance with the case of strong gravity, where the instability is characterized by horizontal displacements. Our results illustrate that the anelastic approximation can efficiently describe the evolution of toroidal field instability in stellar interiors. The suppression of the instability as a consequence of increasing values of ωBV might play a role to explain the magnetic desert in Ap/Bp stars, since weak fields are only marginally unstable in the case of strong gravity.
local.identifier.orcidhttps://orcid.org/0000-0002-2671-8796
local.identifier.orcidhttps://orcid.org/0000-0001-9268-4849
local.identifier.orcidhttps://orcid.org/0000-0003-3175-9776
local.identifier.orcidhttps://orcid.org/0000-0001-7077-3285
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE FÍSICA
local.publisher.initialsUFMG
local.url.externahttps://academic.oup.com/mnras/article/490/3/4281/5586574

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Global simulations of Tayler instability.pdf
Tamanho:
3.44 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
978 B
Formato:
Plain Text
Descrição: