Os teoremas de Sturm e geometria simplética
Carregando...
Arquivos
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Dissertação de mestrado
Título alternativo
Primeiro orientador
Membros da banca
Alberto Berly Sarmiento Vera
Heleno da Silva Cunha
Jose Antonio Goncalves Miranda
Heleno da Silva Cunha
Jose Antonio Goncalves Miranda
Resumo
Estudamos sistemas de equações diferenciais não-autônomos da forma (B(t)x) = -A(t)x, x E Rn, em que as matrizes A(t) e B(t) são simétricas para todo t real, identificando-os com sistemas hamiltonianos equivalentes em R2n. Foram dadas propriedades topológicas e geométricas da grassmaniana lagrangiana A(n) e de seus estratos. A orientação transversal do estrato de codimensão mínima A1() permitiu-nos definir o índice de Maslov. Com o auxílio da Geometria Simplética e Topologia Algébrica, obtivemos generalizações dos teoremas clássicos de Sturm (teoremas da separação e dacomparação e suas consequências) para o caso n-dimensional
Abstract
We studied systems of non-autonomous ordinary differential equations of the form (B(t)x0)0 = A(t)x, x E Rn, in which the matrices A(t) e B(t) are symmetric for all t in reals, identifying them with equivalent hamiltonian systems in R2n. We'd given topological and geometrical properties of Grassmanian Lagrangian A(n) and their trains. The transversal orientation of the minimal codimension train A1() allowed us to definethe Maslov's index. With help of the Symplectic Geometry and Algebraic Topology, we'd get generalizations of the Sturm classical theorems (comparison and separation theorems and their consequences) for n-dimensional case.
Assunto
Matemática, Sistemas hamiltonianos, Geometria simplética, Indice de Maslov, Funcoes de langranian
Palavras-chave
Sistemas hamiltonianos, Grassmaninana lagrangiana, Índice de Marlov, Teoremas de Sturm