Os teoremas de Sturm e geometria simplética

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Alberto Berly Sarmiento Vera
Heleno da Silva Cunha
Jose Antonio Goncalves Miranda

Resumo

Estudamos sistemas de equações diferenciais não-autônomos da forma (B(t)x) = -A(t)x, x E Rn, em que as matrizes A(t) e B(t) são simétricas para todo t real, identificando-os com sistemas hamiltonianos equivalentes em R2n. Foram dadas propriedades topológicas e geométricas da grassmaniana lagrangiana A(n) e de seus estratos. A orientação transversal do estrato de codimensão mínima A1() permitiu-nos definir o índice de Maslov. Com o auxílio da Geometria Simplética e Topologia Algébrica, obtivemos generalizações dos teoremas clássicos de Sturm (teoremas da separação e dacomparação e suas consequências) para o caso n-dimensional

Abstract

We studied systems of non-autonomous ordinary differential equations of the form (B(t)x0)0 = A(t)x, x E Rn, in which the matrices A(t) e B(t) are symmetric for all t in reals, identifying them with equivalent hamiltonian systems in R2n. We'd given topological and geometrical properties of Grassmanian Lagrangian A(n) and their trains. The transversal orientation of the minimal codimension train A1() allowed us to definethe Maslov's index. With help of the Symplectic Geometry and Algebraic Topology, we'd get generalizations of the Sturm classical theorems (comparison and separation theorems and their consequences) for n-dimensional case.

Assunto

Matemática, Sistemas hamiltonianos, Geometria simplética, Indice de Maslov, Funcoes de langranian

Palavras-chave

Sistemas hamiltonianos, Grassmaninana lagrangiana, Índice de Marlov, Teoremas de Sturm

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por