Percolação crítica em lajes

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Membros da banca

Rémy de Paiva Sanchis
Augusto Quadros Teixeira

Resumo

A percolação foi introduzida na literatura matemática em (BROADBENT; HAMMERSLEY, 1957) por meio da formulação de um simples modelo estocástico para compreender o fenômeno de transporte de um fluido através de um meio poroso. O principal objetivo dessa dissertação é compreender o modelo de percolação de Bernoulli de arestas em lajes, que são grafos da forma Z^2 × {0, . . . , k}. Precisamente, fazemos uma exposição do resultado central contido em (DUMINIL; SIDORAVICIUS; TASSION, 2016), que demonstra a ausência quase certa de um aglomerado infinito no ponto crítico para o modelo de percolação de Bernoulli de arestas em lajes. Expomos também as ferramentas clássicas e necessárias para o estudo da percolação de Bernoulli nesses grafos, tais como a Desigualdade FKG, teoremas de existência do aglomerado infinito na fase supercrítica, bem como sua unicidade.

Abstract

Percolation was introduced in mathematical literature in(BROADBENT;HAMMERSLEY,1957) through the formulation of a simple stochastic model to understand the phenomenon off luid transport through a porous medium.The main objective of this dissertation is to understand the Bernoulli percolation model of edges on slabs, which are graph softhe form Z2×{0,...,k}. Precisely, wepresent the central result contained in (DUMINIL; SIDORAVICIUS; TASSION, 2016), which demonstrates the almost sure absence of ani nfinite cluster at th ecritical point for the Bernoulli percolatio nmodel of edges on slabs. We also presente the classical and necessary tools for the study of Bernoulli percolation on these graphs, suchas the FKG Inequality, theorems on the existence of the infinite cluster in the supercritical phase, as well as it suniqueness. Keywords: Graph percolation, critical point, absence of infinite cluster, FKG Inequality.

Assunto

Matemática – Teses, Percolação (Física estatística) – Teses, Variáveis aleatórias – Probabilidades – Teses.

Palavras-chave

Percolação em grafos, ponto crítico, ausência de aglomerado infinito, Desigualdade FKG

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por