Teorema de Bersntein para gráficos mínimos em R^n, (3,<=n,,=6)

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Marcos da Silva Montenegro
Heleno da Silva Cunha

Resumo

O cláassico teorema de Bernstein diz que se uma função u : R2 ! R ésolução inteira da equação de superfície mínima,div ru p1 + jruj2!= 0então u é uma função linear, ou seja, o gráfico de u é necessariamente umplano. Se considerarmos u : Rn1 ! R, uma versão desse teorema continua válida para n 8, existindo contra-exemplo em dimensões mais altas.Nosso principal objetivo nesse trabalho é demonstrar esse teorema para o caso n 6. E mostraremos também que se uma hipersuperfície no espaço euclidiano é completa, mínima, estáavel e parabólica então ela é necessariamente um plano.

Abstract

The classic Bernstein theorem says that, if a function u : R2 ! R is anentire solution to the minimal surface equationdiv ru p1 + jruj2!= 0then u is a linear function, that is, the graph of u is necessarily a plan. Ifwe consider u : Rn1 ! R, a version of this theorem remains valid untiln 8, counter-examples were found in higher dimensions. Our main goal in this work is to show that this theorem is true for n 6. We will also show that if a hypersurface in the euclidean space is complete, minimal, stable and parabolic then it is necessarily a plan.

Assunto

Matemática, Riemannian, geometria, Variedades riemanianas, Superficies algebricas

Palavras-chave

Superfícies Mínima, Estabilidade, Teorema de Bernstein

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por