Teorema de Bersntein para gráficos mínimos em R^n, (3,<=n,,=6)
Carregando...
Arquivos
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Dissertação de mestrado
Título alternativo
Primeiro orientador
Membros da banca
Marcos da Silva Montenegro
Heleno da Silva Cunha
Heleno da Silva Cunha
Resumo
O cláassico teorema de Bernstein diz que se uma função u : R2 ! R ésolução inteira da equação de superfície mínima,div ru p1 + jruj2!= 0então u é uma função linear, ou seja, o gráfico de u é necessariamente umplano. Se considerarmos u : Rn1 ! R, uma versão desse teorema continua válida para n 8, existindo contra-exemplo em dimensões mais altas.Nosso principal objetivo nesse trabalho é demonstrar esse teorema para o caso n 6. E mostraremos também que se uma hipersuperfície no espaço euclidiano é completa, mínima, estáavel e parabólica então ela é necessariamente um plano.
Abstract
The classic Bernstein theorem says that, if a function u : R2 ! R is anentire solution to the minimal surface equationdiv ru p1 + jruj2!= 0then u is a linear function, that is, the graph of u is necessarily a plan. Ifwe consider u : Rn1 ! R, a version of this theorem remains valid untiln 8, counter-examples were found in higher dimensions. Our main goal in this work is to show that this theorem is true for n 6. We will also show that if a hypersurface in the euclidean space is complete, minimal, stable and parabolic then it is necessarily a plan.
Assunto
Matemática, Riemannian, geometria, Variedades riemanianas, Superficies algebricas
Palavras-chave
Superfícies Mínima, Estabilidade, Teorema de Bernstein