Detection of several common adulterants in raw milk by mid-infrared spectroscopy and one-class and multi-class multivariate strategies
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Artigo de periódico
Título alternativo
Primeiro orientador
Membros da banca
Resumo
A sequential strategy was proposed to detect adulterants in milk using a mid-infrared spectroscopy and soft independent modelling of class analogy technique. Models were set with low target levels of adulterations including formaldehyde (0.074 g.L−1), hydrogen peroxide (21.0 g.L−1), bicarbonate (4.0 g.L−1), carbonate (4.0 g.L−1), chloride (5.0 g.L−1), citrate (6.5 g.L−1), hydroxide (4.0 g.L−1), hypochlorite (0.2 g.L−1), starch (5.0 g.L−1), sucrose (5.4 g.L−1) and water (150 g.L−1). In the first step, a one-class model was developed with unadulterated samples, providing 93.1% sensitivity. Four poorly assigned adulterants were discarded for the following step (multi-class modelling). Then, in the second step, a multi-class model, which considered unadulterated and formaldehyde-, hydrogen peroxide-, citrate-, hydroxide- and starch-adulterated samples was implemented, providing 82% correct classifications, 17% inconclusive classifications and 1% misclassifications. The proposed strategy was considered efficient as a screening approach since it would reduce the number of samples subjected to confirmatory analysis, time, costs and errors.
Abstract
Assunto
Tecnologia de alimentos, Leite
Palavras-chave
Milk adulteration, One-class modelling, Adulterant detection, Multi-class modelling, Multivariate SIMCA screening
Citação
Departamento
Curso
Endereço externo
https://www.sciencedirect.com/science/article/pii/S0308814617303874