Análise paramétrica da instabilidade de estruturas reticuladas planas esbeltas com comportamento dinâmico geometricamente não linear pelo método posicional dos elementos finitos

dc.creatorWilliam Luiz Fernandes
dc.date.accessioned2023-05-30T16:36:20Z
dc.date.accessioned2025-09-08T23:54:58Z
dc.date.available2023-05-30T16:36:20Z
dc.date.issued2022-09-23
dc.description.abstractThe demand for lightweight structural systems makes them susceptible to vibration problems that may compromise their performance and reliability. With the advancement in material technology, structures become more slender and with increasing spans, increasing the probability of loss of stability. Thus, geometrically nonlinear dynamic analysis becomes indispensable in structural design. The techniques developed over the last few years aim to assist engineers in the vibration analysis of complex structures. Thus, computational resources are essential. Software that performs dynamic analysis efficiently, allied to the accuracy and reliability of the results, becomes more necessary for engineers. The analysis and design of slender structures under vibration require the adjustment of physical and/or geometric parameters to meet a required level of performance and reliability. This research work proposes a methodology for dynamic instability analysis in plane frames using a geometrically nonlinear positional formulation of the Finite Element Method for all implementations. The study can be systematically presented as follows: (i) the evaluation of instability by dynamic snap-through in shallow arches and plane frames; (ii) calculus of the natural frequencies of vibration from the Subspace Iteration Method using the Hessian matrix; (iii) classical time-step integration methods with numerical dissipation control (Generalized-α, HHT-α, and WBZ-α), as well as recent algorithms (Truly Self-starting Two Sub-steps method and Three-parameter Single-step method) applied to nonlinear dynamic systems; (iv) classification of the systems (chaotic behavior) from the Lyapunov exponents obtained by nonlinear predictor algorithm and by Jacobian matrix analysis, as well as the Poincaré sections. Several examples from the literature were used to compare results and validate the performed implementations. Within a certain condition, the method of Iteration by Vector Subspaces using the Hessian matrix presented consistent results for the first natural frequencies of vibration. Most of the numerical integration methods proved to be efficient in the proposed analyses, with emphasis on the Generalized-α method due to its stability. The proposed algorithms for calculating the Lyapunov exponents also showed satisfactory results for the proposed examples.
dc.identifier.urihttps://hdl.handle.net/1843/54188
dc.languagepor
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectEngenharia de estruturas
dc.subjectAlgoritmos
dc.subjectIntegração numérica
dc.subjectMétodo dos elementos finitos
dc.subjectMétodos iterativos (Matemática)
dc.subject.otherAnálise dinâmica geometricamente não-linear
dc.subject.otherMétodo dos elementos finitos posicional
dc.subject.otherIteração por subespaços vetoriais
dc.subject.otherAlgoritmos de integração numérica no tempo
dc.subject.otherExpoentes de Lyapunov
dc.titleAnálise paramétrica da instabilidade de estruturas reticuladas planas esbeltas com comportamento dinâmico geometricamente não linear pelo método posicional dos elementos finitos
dc.title.alternativeParametric analysis of the instability of slender plane frames with geometrically nonlinear dynamic behavior using the positional finite element method
dc.typeTese de doutorado
local.contributor.advisor1Marcelo Greco
local.contributor.advisor1Latteshttp://lattes.cnpq.br/7953197985531154
local.contributor.referee1Felício Bruzzi Barros
local.contributor.referee1Lapo Gori
local.contributor.referee1Paulo Batista Gonçalves
local.contributor.referee1Ricardo Azoubel da Mota Silveira
local.creator.Latteshttp://lattes.cnpq.br/5064535628609807
local.description.resumoA atual demanda por sistemas estruturais mais leves faz com que estes, por consequência, estejam susceptíveis a problemas de vibração que podem vir a comprometer seu desempenho e confiabilidade. Com o avanço na tecnologia de materiais as estruturas tornam-se mais esbeltas e com vãos cada vez maiores, aumentando a probabilidade de perda de estabilidade. Assim, a análise dinâmica geometricamente não linear se torna indispensável nas etapas de um projeto estrutural. As várias técnicas desenvolvidas ao longo dos últimos anos visam auxiliar os engenheiros em análises de vibração em estruturas complexas. Assim, o auxílio dos recursos computacionais é fundamental. Programas que realizem análises dinâmicas de forma eficiente, aliados à precisão e confiabilidade dos resultados, se tornam mais necessários no dia a dia das atividades dos engenheiros. A análise e o projeto de estruturas esbeltas sob efeitos de vibração requerem o ajuste de parâmetros físicos e/ou geométricos de forma a se atender um nível necessário de desempenho e confiabilidade. Neste cenário se insere este trabalho de pesquisa, onde foi desenvolvida uma metodologia para análise da instabilidade dinâmica em sistemas estruturais reticulados esbeltos planos usando uma formulação posicional geometricamente não linear do Método dos Elementos Finitos para todas as implementações. O estudo pode ser sistematicamente apresentado da seguinte forma: (i) avaliação da perda de estabilidade por snap-through dinâmico em arcos abatidos e pórticos planos; (ii) cálculo das frequências naturais de vibração a partir do método de Iteração por Subespaços Vetoriais usando-se a matriz Hessiana; (iii) métodos de integração numérica temporal não-lineares com controle de dissipação numérica, clássicos (Generalizado-α, HHT-α e WBZ-α) e recentes (Truly Self-starting Two Sub-steps Method e Three-parameter Single-step Method), comparando-os com soluções analíticas e/ou com o método de Newmark; (iv) classificação dos sistemas em termos do comportamento caótico a partir dos expoentes de Lyapunov obtidos por algoritmo preditor não-linear e por análise da matriz Jacobiana, bem como o traçado das seções de Poincaré. Vários exemplos da literatura foram usados para comparativo de resultados e validação das implementações realizadas. Dentro de uma certa condição, o método de Iteração por Subespaços Vetoriais usando matriz Hessiana apresentou resultados muito consistentes para as primeiras frequências naturais de vibração. A maior parte dos métodos de integração numérica se mostrou eficiente nas análises propostas, com ênfase ao método Generalizado-α, por sua grande estabilidade. Os algoritmos propostos para cálculo dos expoentes de Lyapunov também mostraram resultados satisfatórios frente aos exemplos propostos.
local.publisher.countryBrasil
local.publisher.departmentENG - DEPARTAMENTO DE ENGENHARIA ESTRUTURAS
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Engenharia de Estruturas

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
William Fernandes - Tese Final corrigida - versao biblioteca - pdf-A.pdf
Tamanho:
9.74 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: