Previsão de vendas de peças para máquinas pesadas por meio de séries temporais
Carregando...
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Monografia de especialização
Título alternativo
Primeiro orientador
Membros da banca
Sueli Aparecida Mingoti
Mario Ernesto Piscoya Díaz
Mario Ernesto Piscoya Díaz
Resumo
Esta monografia tem como objetivo realizar a previsão, para 12 meses, da quantidade de vendas de peças de reposição para máquinas pesadas, em função de seu próprio histórico de vendas e de potenciais variáveis correlacionadas. Assim, foram estimados modelos univariados, nos quais a variável regressora é a própria variável defasada no tempo, e modelos multivariados, nos quais, além da introdução da variável dependente defasada no tempo, como regressora, foram adicionadas variáveis exógenas. Foram aplicados os modelos ARIMA e SARIMA para os modelos univariados e a técnica de regressão dinâmica para os modelos multivariados, que é a combinação de um modelo de regressão com um modelo adicional para estimar os resíduos da regressão, uma vez que, em séries temporais, os resíduos são autocorrelacionados. Nesta monografia, optou-se por estimar os modelos ARIMAX para os modelos multivariados, que usam de uma função de transferência para introduzir covariáveis, ou variáveis exógenas, ao modelo. A previsão de vendas para peças de reposição é importante para que seja possível equilibrar o estoque em níveis satisfatórios, manter os custos em níveis adequados e atender o cliente em tempo hábil.
Abstract
This monograph aims to forecast, for 12 months, the amount of sales of spare parts for heavy machinery, based on its own sales history and potential correlated variables. Thus, univariate models were estimated, in which the regression variable is the time-lagged variable itself, and multivariate models, in which exogenous variables were added along with the introduction of the dependent variable lagged in time, as a regression variable. ARIMA and SARIMA models were applied for the univariate models, and dynamic regression technique for the multivariate models, which is the combination of a regression model with an additional model to estimate the regression residuals, since, in time series, the residuals are autocorrelated. In this monograph, it was decided to estimate the ARIMAX models for the multivariate models, which use a transfer function to introduce covariates or exogenous variables to the model. The sales forecast for spare parts is important so that it is possible to balance the stock at satisfactory levels, keep costs at adequate levels and serve the customer in a timely manner.
Assunto
Estatística, Análise de séries temporais, Análise multivariada, Peças de máquinas – Previsão de vendas
Palavras-chave
Séries Temporais, Arima, Sarima, Arimax, Regressão Dinâmica
Citação
Departamento
Endereço externo
Coleções
Avaliação
Revisão
Suplementado Por
Referenciado Por
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Acesso Aberto
