Interseções completas e pontos de Weierstrass

dc.creatorSarah Faria Monteiro Mazzini Costa
dc.date.accessioned2022-03-11T23:24:27Z
dc.date.accessioned2025-09-09T00:41:29Z
dc.date.available2022-03-11T23:24:27Z
dc.date.issued2021-10-08
dc.description.abstractThere are many advances related to the the rationality of the moduli space 𝒨H𝑔,1 parametrising pointed smooth projective curves of genus 𝑔 ≥ 0 and Weierstrass semigroup H at the marked point. The semigroups studied in the results have genus 𝑔 ≤ 6 or they are symmetric semigroups generated by at most four elements. This thesis is concerned to show two results about the geometry of 𝒨H 𝑔,1 that can be described as follows: given a numerical semigroup H of genus 𝑔 ≥ 1, if the monomial affine curve Spec k[H] is a complete intersection, then we can show that 𝒨H𝑔,1 admits a compactification that is isomorphic to the projetivization of the negatively graded part of the first cohomology moduli of k[H]. The complete intersection hypothesis can be interchanged by the hypothesis that the curve 𝑆𝑝𝑒𝑐 k[H] is a local complete intersection, but in this case we have to assume that 𝒨H𝑔,1 is non-empty. Under these new conditions we show the same conclusion as the first result. Many examples are made, including for families of semigroups. A classical result of realizable semi-groups is obtained independently through a simple application of the Jacobian criterion, and another result on the smoothing of monomial curves, without any obstructions, immediately declines from the second result described above.
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.identifier.urihttps://hdl.handle.net/1843/40040
dc.languagepor
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectMatemática – Teses
dc.subjectWeierstrass, pontos de – Teses
dc.subjectCurvas modulares – Teses
dc.subjectSingularidades (Matemática) – Teses
dc.subjectTeoria de interseção – Teses
dc.subject.otherPontos de Weierstrass
dc.subject.otherInterseções completas
dc.subject.otherModuli de curvas
dc.subject.otherDeformações de singularidades
dc.titleInterseções completas e pontos de Weierstrass
dc.typeTese de doutorado
local.contributor.advisor1André Luis Contiero
local.contributor.advisor1Latteshttp://lattes.cnpq.br/4249447001103340
local.contributor.referee1Aline Vilela Andrade
local.contributor.referee1Cecília Salgado Guimarães da Silva
local.contributor.referee1Letterio Gatto
local.contributor.referee1Marcelo Escudeiro Hernandes
local.contributor.referee1Renato Vidal da Silva Martins
local.creator.Latteshttp://lattes.cnpq.br/6968972660737701
local.description.resumoExistem alguns avanços relacionados à racionalidade do espaço de moduli de curvas algébricas pontuadas de gênero g com semigrupo de Weierstrass H. Os semigrupos estudados nos resultados existentes ou têm gênero menor ou igual a 6 ou são simétricos e gerados por no máximo quatro elementos. A presente tese tem como objetivo mostrar dois resultados sobre a geometria do espaço de moduli que podem ser descritos da seguinte forma: dado um semigrupo H de gênero g, se a curva monomial afim dada por H é interseção completa, então é possível mostrar que o espaço de moduli admite uma compactificação que é isomorfa a projetivização da parte negativamente graduada do primeiro módulo de cohomologia do complexo cotangente da álgebra do semigrupo H. A hipótese de intersecção completa pode ser enfraquecida assumindo que a curva dada por H é uma interseção completa local, porém devemos assumir também que o espaço de moduli é não vazio. Sob essas novas condições mostramos a mesma conclusão do primeiro resultado. São feitos muitos exemplos, inclusive para famílias de semigrupos. Um resultado clássico sobre a realização de semigrupos é obtido de maneira independente através de uma simples aplicação do critério Jacobiano e um outro resultado acerca da suavização de curvas monomiais, sem quaisquer obstruções, declina imediatamente do segundo resultado descrito.
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE MATEMÁTICA
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Matemática

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Interseções completas e pontos de Weierstrass.pdf
Tamanho:
1.7 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: