A função não-diferenciável de Riemann

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Emanuel Carneiro
Mikhail Belolipetsky

Resumo

Nesta dissertação seguiremos a exposição de [1], onde o matemático holandês J. J. Duistermaat (1942-2010) faz um estudo detalhado da função X1 n=1 1 n2 sen(n2x). Definiremos essa função na forma f(x) = X1 n=1 1 n2 sen(n2x); (1) com o fator de escala introduzido para simplificar fórmulas futuras. Segundo o relato de Weierstrass no dia 18 de julho de 1872 à Academia Real de Ciências em Berlim, essa função havia sido introduzida por Riemann como um exemplo de uma função contínua que não possui derivada em nenhum ponto. Weierstrass não conseguiu demonstrar essa propriedade para a funçã f, mas teve sucesso em prová-la para funções da forma X1 n=0 1 an sen(bnx); (2) em que a > 1, b e um inteiro positivo ímpar e b a > 1 + 3 2 . Foi neste mesmo relato que Weierstrass apresentou o artigo em que fazia essa construção, provando a não-diferenciabilidade de (2)..

Abstract

Assunto

Matemática, Geometria riemaniana, Grupos modulares, Funções de variáveis complexas

Palavras-chave

Matemática

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por