Electron states of 2D metal-organic and covalent-organic honeycomb frameworks: ab initio results and a general fitting hamiltonian

dc.creatorOrlando José Silveira Júnior
dc.creatorSimone Silva Alexandre
dc.creatorHelio Chacham
dc.date.accessioned2024-02-16T18:25:27Z
dc.date.accessioned2025-09-09T00:42:46Z
dc.date.available2024-02-16T18:25:27Z
dc.date.issued2016
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.description.sponsorshipFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.description.sponsorshipINCT – Instituto nacional de ciência e tecnologia (Antigo Instituto do Milênio)
dc.identifier.doihttps://doi.org/10.1021/acs.jpcc.6b05081
dc.identifier.issn1932-7455
dc.identifier.urihttps://hdl.handle.net/1843/64086
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofThe Journal of Physical Chemistry C
dc.rightsAcesso Restrito
dc.subjectEstrutura eletrônica
dc.subjectTeoria de grupos
dc.subject.otherElectron states
dc.subject.otherBand structure
dc.subject.otherCovalent organic frameworks
dc.subject.otherFirst-principles calculations
dc.subject.otherGroup theory
dc.titleElectron states of 2D metal-organic and covalent-organic honeycomb frameworks: ab initio results and a general fitting hamiltonian
dc.typeArtigo de periódico
local.citation.epage19803
local.citation.issue35
local.citation.spage19796
local.citation.volume120
local.description.resumoWe present a tight-binding model that allows a quantitative fitting of the ab initio band structure, near the Fermi energy, of several 2D metal–organic and covalent–organic honeycomb-like frameworks. The model is based on the kagome–honeycomb lattice, defined as the superposition of the named lattices. The full spectrum of the model Hamiltonian is analytically solvable in the case of one orbital per site and nearest-neighbor hopping, and at selected points of the Brillouin zone for hopping up to second neighbors. With proper choices of parameters and band occupation, the model describes five types of electronic structure within this class of materials. All five types are obtained in explicit fittings of the model to first-principles calculations of 2D frameworks. The model also permits the identification of crystallographic point group broken symmetries that lead to band gap openings in Cu3(HITP)2. Spin–orbit effects are also investigated in model and first-principles calculations of Ni3C12S12.
local.identifier.orcidhttps://orcid.org/0000-0002-0403-9485
local.identifier.orcidhttps://orcid.org/0000-0002-1036-3265
local.identifier.orcidhttps://orcid.org/0000-0001-5041-9094
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE FÍSICA
local.publisher.initialsUFMG
local.url.externahttps://pubs.acs.org/doi/10.1021/acs.jpcc.6b05081

Arquivos

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
978 B
Formato:
Plain Text
Descrição: