Model predictive control schemes with avoidance features
Carregando...
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Tese de doutorado
Título alternativo
Primeiro orientador
Membros da banca
Leonardo Antônio Borges Torres
Luciano Cunha de Araújo Pimenta
Julio Elias Normey Rico
Tito Luís Maia Santos
Luciano Cunha de Araújo Pimenta
Julio Elias Normey Rico
Tito Luís Maia Santos
Resumo
In recent years, there has been a significant movement towards Model Predictive Control (MPC), primarily due to its flexibility and advancements in ensuring stability and robustness. Furthermore, the MPC ability to impose constraints and design objective functions has opened new possibilities for applications that require multiple objectives. Amongst them, the problem of avoidance has become a prominent challenge due to the non-convexities of the admissible space.
In the MPC literature, there are theoretically grounded works that handle non-convex problems seeking solutions that provide convex approximations, for instance, incorporating a convexifying homeomorphism into the optimization problem. However, these works do not address the problem of non-convexity caused by holes inside the space, since this is not typical for most applications and mainly appears when handling avoidance problems. The literature for MPC with avoidance features is mostly composed of works focused on the application, leaving some MPC fundamentals aside. For instance, adding constraints directly to the optimal control problem can result in feasibility issues for the MPC algorithm. Similarly, in regulatory formulations for applications requiring tracking or changing targets, stability cannot be guaranteed. Additionally, works modifying the cost functional to include avoidance often do not deal with the impact of losing the value function's decreasing properties. In this context, this thesis investigates the problem of avoidance within the model predictive control framework aiming to formalize concepts and provide a solid theoretical framework for a control problem that is increasingly prevalent in the literature.
Inspired by the set-point tracking MPC framework, we explore the central idea of incorporating artificial variables into the optimal control problem. This approach enables us to introduce avoidance features into the set-point tracking MPC strategy, resulting in closed-loop systems with an enlarged domain of attraction and improved feasibility assurance against changing references. The artificial variables are considered together with an avoidance penalty, forming the basis of our strategies and ensuring recursive feasibility even in the presence of an unknown number of regions to avoid. Additionally, this approach overcomes the problems of working with non-convex admissible spaces, allowing us to consider an equivalent convex problem. We analyze the resulting control schemes using the input-to-state stability (ISS) paradigm and show that, under the mild assumption that the avoidance cost is uniformly bounded over time, the closed-loop system is input-to-state stable and recursively feasible. Finally, this thesis proposes both linear and non-linear control schemes for avoidance and examines the robustness of the approach in the face of unknown but bounded disturbances.
Abstract
Nos últimos anos, pode-se observar um movimento significativo em direção ao Controle
Preditivo Baseado em Modelo (MPC, do inglês Model Predictive Control), principalmente
devido à sua flexibilidade e aos avanços obtidos na garantia de estabilidade e robustez. Além
disso, a capacidade do MPC de impor restrições e projetar funções de custo abriu novas
possibilidades para aplicações que requerem múltiplos objetivos. Entre eles, o problema de
se evitar regiões específicas do espaço (problema de evitação) é particularmente desafiador
devido a não convexidades presentes no espaço admissível.
Na literatura de MPC, existem trabalhos teoricamente fundamentados que lidam
com problemas não convexos buscando soluções que forneçam aproximações convexas,
por exemplo, incorporando um homeomorfismo ao problema de otimização. No entanto,
esses trabalhos não abordam o problema de não convexidades causadas por buracos no
interior do espaço admissível, pois isso não é típico da maioria das aplicações e aparece
principalmente ao lidar com problemas de evitação. A literatura de MPC para evitação é
composta em sua maioria por trabalhos focados na aplicação, deixando de lado alguns
fundamentos de MPC. Por exemplo, adicionar restrições diretamente ao problema de
controle ótimo pode resultar em desafios em termos da factibilidade do algoritmo de
controle. Da mesma forma, em formulações para regulação em aplicações que requerem
rastreamento ou referências contínuas por partes, não se pode garantir estabilidade em
malha-fechada. Além disso, os trabalhos que modificam o funcional de custo para incluir
o problema de evitação geralmente não lidam com o impacto de perder as propriedades de
decrescimento da função valor. Nesse contexto, esta tese investiga o problema de evitação
dentro do arcabouço de controle preditivo baseado em modelo com o objetivo de formalizar
conceitos e fornecer uma estrutura teórica sólida para um problema de controle que está
cada vez mais presente na literatura.
Inspirados pelas formulações de tracking MPC, exploramos a ideia central de incorporar
variáveis artificiais ao problema de controle ótimo. Essa abordagem nos permite introduzir
capacidade de evitação nas formulações de tracking MPC, resultando em sistemas em malha
fechada com um domínio de atração ampliado e com garantias de factibilidade recursiva
para referências contínuas por partes. As variáveis artificiais são consideradas juntamente
com uma penalidade para evitação, formando a base de nossas estratégias e garantindo a
factibilidade recursiva mesmo na presença de um número desconhecido de regiões a serem
evitadas. Além disso, ao considerar um problema convexo equivalente, esta abordagem
supera os problemas de se trabalhar com espaços admissíveis não convexos. As estratégias
de controle propostas são analisadas por meio do paradigma de estabilidade entrada-estado
(ISS, do inglês input-to-state stability), permitindo provar que, sob a hipótese de que
o custo de evitação é uniformemente limitado ao longo do tempo, o sistema em malha
fechada é estável entrada-estado e recursivamente factível. Finalmente, esta tese propõe
esquemas de controle lineares e não lineares para o problema de evitação e examina sua
robustez na presença de distúrbios desconhecidos porém limitados.
Assunto
Engenharia elétrica, Controle preditivo, Estabilidade
Palavras-chave
MPC, Avoidance, Set-point tracking, Robustness