LMI-based stability analysis for piecewise multi-affine systems

dc.creatorAnh-Tu Nguyen
dc.creatorMichio Sugeno
dc.creatorVíctor Costa da Silva Campos
dc.creatorMichel Dambrine
dc.date.accessioned2025-04-02T14:07:49Z
dc.date.accessioned2025-09-09T01:01:42Z
dc.date.available2025-04-02T14:07:49Z
dc.date.issued2017
dc.identifier.doi10.1109/TFUZZ.2016.2566798
dc.identifier.issn1941-0034
dc.identifier.urihttps://hdl.handle.net/1843/81216
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofIEEE Transactions on fuzzy systems
dc.rightsAcesso Restrito
dc.subjectSistemas difusos
dc.subjectLiapunov, Funções de
dc.subjectSistemas não lineares
dc.subject.otherStability analysis , Fuzzy systems , Nonlinear systems , Numerical stability , Symmetric matrices , Lyapunov methods , Linear matrix inequalities
dc.subject.otherFuzzy systems , linear matrix inequalities (LMIs) , piecewise Lyapunov functions , piecewise multi-affine (PMA) systems , singleton consequents , stability analysis
dc.subject.otherStability Analysis , Effective Method , Numerical Examples , Nonlinear Systems , Class Of Systems , Stability Conditions , Lyapunov Function , Fuzzy System , Linear Matrix Inequalities , Arbitrary Accuracy , Stability Of System , Sufficient Conditions , Regular Grid , State-space Model , Conditions Of Theorem , Fuzzy Model , Fuzzy Control , Stability Analysis Of Systems , Numerical Solver , Piecewise Linear Model , Affine Systems , Quadratic Lyapunov Function , General Nonlinear Systems
dc.titleLMI-based stability analysis for piecewise multi-affine systems
dc.typeArtigo de periódico
local.citation.epage714
local.citation.issue3
local.citation.spage707
local.citation.volume25
local.description.resumoThis paper provides a computational method to study the asymptotic stability of piecewise multi-affine (PMA) systems. Such systems stem from a class of fuzzy systems with singleton consequents and can be used to approximate any smooth nonlinear system with arbitrary accuracy. Based on the choice of piecewise Lyapunov functions, stability conditions are expressed as a feasibility test of a convex optimization with linear matrix inequality constraints. The basic idea behind these conditions is to exploit the parametric expressions of PMA systems by means of Finsler's lemma. Numerical examples are given to point out the effectiveness of the proposed method.
local.publisher.countryBrasil
local.publisher.departmentENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICA
local.publisher.initialsUFMG
local.url.externahttps://ieeexplore.ieee.org/abstract/document/7468468

Arquivos

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: